Abstract: We consider the existence of periodic solutions-cycles in nonlinear differential equations with a small parameter. We obtain necessary and sufficient conditions for the existence of periodic solutions. These conditions significantly expand the applicability of the Pontryagin small parameter method from the theory of dynamical systems on the plane. We do not assume the differentiability of all functions involved in the system. Moreover, the system is not Hamiltonian. In order to prove the existence of periodic solutions of the system of nonlinear differential equations we use topological methods of nonlinear analysis. Based on the proposed methods, we formulate and prove theorems on the necessary and sufficient conditions for the existence of periodic solutions under the condition of continuity of all functions involved in the system. Moreover, we use the transition to the polar coordinate system and Jordan transformations. In the last section we propose a method for developing examples for a specific class of functions. Furthermore, we give an example of a system such that we easy verify the conditions for the existence of periodic solutions for small values of \(\varepsilon\).
Keywords: nonlinear differential equations, small parameter, Jordan transformation, homotopy, rotation of vector fields
For citation: Grishanina, G. E., Muhamadiev, E. M., Nurov, I. J. and Sharifzoda, Z. I. Analysis of the Existence of Periodic Solutions of the Systems of Nonlinear Differential Equations with a Small Parameter, Vladikavkaz Math. J., 2025, vol. 27, no. 3, pp. 28-39. DOI 10.46698/r6381-0860-2384-e
1. Poincare, H. Selected Works, Moscow, Nauka, 1971, 771 p. (in Russian).
2. Lyapunov, A. M. Obshchie zadacha ob ustojchivosti dvizheniya [General Problem of the Stability
of Motion], Moscow, State Publishing House of Technical and Theoretical Literature, 1950, 472 p.
(in Russian).
3. Bogolyubov, N. N. Asimptoticheskie metody v teorii nelinejnyh kolebanij [Asymptotic Methods in the Theory of Nonlinear Oscillations], Moscow, State Publishing House of Physical and Mathematical Literature, 1974, 504 p. (in Russian).
4. Malkin, K. G. Metody Lyapunova i Puankare v teorii nelinejnyh kolebanij [Lyapunov and Poincare Methods in the Theory of Nonlinear Oscillations], Moscow, State Publishing House of Technical and Theoretical Literature, 1949, 246 p. (in Russian).
5. Guckenheimer, J. and Holmes, P. Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields, Applied Mathematical Sciences, vol. 42, Springer, 1983, 462 p.
6. Tikhonov, A. N. On the Dependence of Solutions of Differential Equations on a Small Parameter,
Matematicheskii Sbornik. Novaya Seriya, 1948, vol. 22(64), no. 2, pp. 193-204
(in Russian).
7. Morozov, A. D. On Limit Cycles and Chaos in Pendulum-Type Equations,
Journal of Applied Mathematics and Mechanics, 1989, vol. 53, no. 5, pp. 721-730
(in Russian).
8. Sharifzoda, Z. I., Muhamadiev, E. M. and Nurov, I. J. Cyclic Solutions of the Pontryagin Equation
with a Small Parameter, Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory,
2021, vol. 194, pp. 167-171 (in Russian). DOI: 10.36535/0233-6723-2021-194-167-171.
9. Pontryagin, L. S. On Dynamical Systems Close to Hamiltonian, Journal of Experimental and Theoretical Physics,
1934, vol. 4, no. 8, pp. 234-236 (in Russian).
10. Yumagulov, M. G., Ibragimova, L. S. and Belova, A. S. Methods for Studying the Stability of Linear Periodic
Systems Depending on a Small Parameter, Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2019, vol. 163, pp. 113-126 (in Russian).
11. Muhamadiev, E. M., Nazimov, A. B. and Naimov, A. N. On the Solvability of One Class
of Nonlinear Equations with a Small Parameter in a Banach Space,
Ufa Mathematical Journal, 2020, vol. 12, no. 3, pp. 60-68. DOI: 10.13108/2020-12-3-60.
12. Bautin, N. N. and Leontovich, E. A. Metody i priemy kachestvennogo issledovaniya
dinamicheskih sistem na ploskosti [Methods and Techniques for Qualitative Research
of Dynamic Systems on a Plane], Moscow, Nauka, 1976, 496 p. (in Russian).
13. Krasnoselsky, M. A. and Zabreiko, P. P. Geometricheskie metody nelinejnogo analiza
[Geometric Methods of Nonlinear Analysis], Moscow, Nauka, 1975, 512 p. (in Russian).
14. Krasnoselsky, M. A. Topologicheskie metody i teorii nelinejnyh integral'nyh uravnenij
[Topological Methods and Theories of Nonlinear Integral Equations],
Moscow, State Publishing House of Technical and Theoretical Literature,
1956, 392 p. (in Russian).
15. Krasnoselsky, M. A. Vektornye polya v ploskosti [Vector Fields in a Plane],
Moscow, Fizmatgiz, 1963, 248 p. (in Russian).
16. Fillipov, A. F. Vvedenie v teoriyu differencial'nyh uravnenij [Introduction
to the Theory of Differential Equations], Moscow, LENAND, 2015, 240 p. (in Russian).
17. Leray, J. A. and Schauder, Y. Topology and Functional Equations, Russian Mathematical
Surveys, 1946, vol. 1, no. 3, pp. 71-79 (in Russian).
Сайт использует файлы cookie, необходимые для корректной работы сайта, и сервисы Яндекс-метрики, используемые для анализа статистики посещаемости, которые не содержат сведений, на основании которых можно идентифицировать личность пользователя. Продолжение пользования сайтом является согласием на применение данных технологий.