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1. Introduction
Let 3 denote the class of normalized meromorphic functions f of the form
f(z):1+§:a 2" (1.1)
z = o '
defined on the unit disk

A={zeC:0< |z <1}

and which are analytic except for a set of poles of finite order on U = {z € C : |z| < 1}.
Denoted by Y p and be of the form

1 o
fE =24 ans", an>0. (1.2)
n=1
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The Hadamard product or convolution of two functions f(z) given by (1.2) and

1 o
) =—+D gn2" (1.3)
n=1

is defined by
(f * g = + Z angn

The function f € ¥ with f(0) # 0 is called meromorphic starlike of order ¥ (0 < ¥ < 1), if

Re (- ZJJ:(I(ZZ))> >9 (z€A). (1.4)

The function f € ¥ with f/(0) # 0 is called meromorphic convex of order ¥ (0 <9 < 1) if

RELO)] .
Re( 72 ) >0 (z€A). (1.5)

The class of all such functions are denoted by ¥, (¥). Further, we denote % (¢) = X*(9)NEp
and E%(ﬂ) = EK(ﬁ) NXp.
Lemma 1 [1]. Suppose that ¢ € [0,1), r € (0,1] and the function f is of the form

1 o
z) = ; + anz", 0< |zl <, (1.6)

with b, > 0. Then the condition

zf’(Z))
Re | — >4 for |z| <7 1.7
(- o D
is equivalent to the condition
> (4 DNbpr™t <1 -0, (1.8)
n=1

The condition (1.4) and the above lemma with » = 1 give the following corollary.
Corollary 1 [1]. Let f € Xp be given by (1.2). Then f € ¥} (0) if and only if

i n+a, <1—19. (1.9)

Various subclasses of ¥ have been studied rather extensively by Clunie [2]|, Nehari and
Netanyahu [3|, Pommerenke [4, 5|, Royster 6], and others (cf., e.g., Bajpai 7], Mogra et al. [§],
Uralegaddi and Ganigi [9], Cho et al. [10], Aouf [11], and Uralegaddi and Somanatha [12]); see
also Duren [13, pp. 29 and 137, and Srivastava and Owa (|14, pp. 86 and 429, also see [11]).

Complex analysis (complex function theory) initiated in the 18th century and has since
become one of the important topics in mathematics. Because of its effective applicability to
a wide range of concepts and problems, this domain has significantly wedged a wide range of
research areas, including engineering, physics, and mathematics. Researchers exposed some
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unexpected connections between ostensibly disparate study fields. Mittag-Leffler function (M-
LF) research is an unusual and fascinating combination of geometry and complex analysis
that deals with the structure of analytic functions in the complex domain and other domains
related to sciences and engineering, has been a topic that has inspired several researchers.
It was first proposed in by Mittag-Leffler [15] function ascends naturally in the solution of
fractional order differential and integral equations, and exclusively in the studies of fractional
generalizing of kinetic equation, random walks, Lévy flights, super-diffusive transport and in
the study of complex systems. Let E¢ be the function defined by

00 n
z

:E — C C with R 0

I'(sn+1)’ el € W es =5

that was introduced by Mittag-Leffler [15] and commonly known as the Mittag-Leffler function.
Wiman [16] defined a more general function E. , generalizing the E. Mittag-Leffler function,
that is

o0

Zn

E ,(2) ;:Zm, 2€C, ¢,0€C, with Re¢ >0, Rep> 0.

When ¢ = 1, it is abbreviated as E¢(z) = E¢ 1(z). Observe that the function E, , contains
many well-known functions as its special case, for example,

e —1

Ei1(z) =€, Eis(z) = ., Es1(2%) = coshz,
z
inh
E2,1 (_22) = cos z, E272 (22) _ sin Z’ E272 (_22) _ smz7
z z
1 1 1 1 3
Ey(2) = 5 <cos 21+ coshzi> , Es(z) = 5 e*® +2¢72%% cos <§z§>]

Numerous properties of Mittag-Leffler function and generalized Mittag-Leffler function
can be originated, for example in [17-22]. We note that the above generalized Mittag-Leffler
function E¢, does not belongs to the family </, where &/ represents the class of functions
whose members are of the form

oo
2) :z—l—Zanz”, z e U, (1.10)
n=2

which are analytic in the open unit disk A and normalized by the conditions
f(0) = f(0) — 1 =0. Let . be the subclass of &/ whose members are univalent in A. Thus,
it is expected to define the following normalization of Mittag-Leffler function as below, due
to Bansal and Prajapat [18]:

I'(0) n
T (1.11)

Eeo(2) = 2I'(0) B¢ o(2) = 2 + Z I(
n=2

that holds for the parameters ¢, 9 € C with Re¢ > 0, Rep > 0, and z € C.
Moreover, Srivastava and Tomovski [23| introduced the generalized the Mittag-Leffler
function, E_p (2)(z € C) in the form

’T:‘Q n
E ngn+g n'z’
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(0,5, 7 € C; Re(s) > max{0,Re(x) — 1}; Re(k) > 0) and proved that it is an entire function
in the complex z-plane, where

(7) D40 Jr(r+1) (r+0 1), 0#£0;
PTTTE\ 6=0

is well known Pochammer symbol. Lately, Aouf and Mostafa [24]| defined

_ (1 + k)
MT,/{ — F 1ET,I£ _
56 =10 (B - )
with (9,7 € C; Re(s) > max{0,Re(x) — 1}; Re(k) > 0; Re(s) = 0 when Re(k) = 1 with
0 # 0) and introduced a new linear operator for f € ¥ and discussed differential inequalities

for meromorphic univalent functions. Now we define a new linear operator .#_ ;""" : ¥p — Xp
by

T =) = MT’“( ) * f(2),

T,K,M _ T n + 1) )F(g) n
o =)= +Zr7r(n+1g+g)(n)!anz’ 2EA,

where the symbol (x) denotes the Hadamard product (or convolution). We define a new
operator .. ;""" : ¥ — ¥ in terms of Hadamard product, as follows:
e T e

ITEL = (L= 0)ITF f(2) + LIS F(2))

S0

jr,/{,o = _gTrm (Z),

I = TIPS NI () -
Thus,

ST () = é +2 1+ m-n0" F(igli&n(ﬁ;)fz)(%!anz", zeA (112)

Shortly, we let
1 o
I f(2) = - + E Upanz", (1.13)

where

(t+ (n+ 1)r)I'(o)
L(T)T((n+1)s + o) (n)!
(1t + 2k)(p)
D(T)I(26 + o)
One can see that fl’l’of(z) =zf'(z)+ f(z) + 271

Let H be a complex Hilbert space and let .2 (H) denote the algebra of all bounded linear
operators on H. For a complex-valued function fanalytic in a domain [E of the complex z-plane

containing the spectrum o () of the bounded linear operator P, let f(P) denote the operator
on H defined by [25, p. 568|

O, = 1+ (n—1)0)™, (1.14)

U, = (1.15)

F(P) = 2; /(zn— P)Lf(2)dz, (1.16)

€
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where I is the identity operator on H and % is a positively-oriented simple rectifiable closed
contour containing the spectrum o(P) in the interior domain. The operator f(IP) can also be
defined by the following series:
o

F9(0)

n!

f(P) =

n=0
which converges in the normed topology (cf. [26]).
Motivated by earlier works on meromorphic functions by function theorists (see [2, 9, 10,
12, 15, 27-30|, and certain studies on Hilbert space operators [31-33| in this paper we made
an attempt to define the new subclass My (Y, p) of Lp, as given in Definition 1, related
with the generalized operator £ ,""™.

DEFINITION 1. For 0 <9 <1 and 0 < p < 1, a function f € 3, be given by (1.2) is said
to be in the class M (9, p), if

H /p(P?f)(l_j%?) H <1 (1.17)

where . ,
Fol) = et SO
T (o= DI (R) + PSS (R)Y
By fixing ¢ = 0, we also define a new class of functions in Definition 2 and denote it
by &35 (9, ).
DEFINITION 2. For 0 <9 <1 and 0 < p < 1, a function f € 3, be given by (1.2) is said
to be in the class &5 (9, p), if

(1.18)

IS E)
77’ Ry mf(]P))

P B
TeEmre T (1-29)

<1 (1.19)

The present paper aims to provide a systematic investigation of the various interesting
properties like coefficient inequalities, growth and distortion inequalities, as well as closure
results for f in the class MMy

and its inverse defined on the new class M, (9, ) are also discussed.

(9, ) extensively. Properties of a certain integral operator

2. Coefficients Inequalities

Our first theorem gives a necessary and sufficient condition for a function f € My (Y, p).
Theorem 1. Let f € ¥p be given by (1.2). Then f € Moy (Y, p) if and only if

i {n—9dmp+p—1)} Onan <1 -9 (2.1)

n=1
< Suppose f satisfies (2.1). Then for ||z| = P = rI we have

[B(ITEm B — {(p — D) ITE™F(B) + pP(ITEm F(B)')|
—[BF/B) + (1~ 29) { (9 — DITL ) + GBI F ()

[e.9]

> (1= p)(n+1)B,a,PmH

n=1
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Ay {14 (1= 20)p}n + (1 = 20)(p — 1)| Buan [P+

n=1

—2(1 —9) + i [{1 + (1 =29)pin+ (1 —29)(p — 1)} CpanP"

n=1

[e o]

Z (n 4 1)Upan|P"H|

o
=2> {n—9np+p—1)} Cpanr™™ —2(1-9) <0, by (2.1).
n=1
Hence, f satisfies (1.17), and f € M, (9, p). Now to prove the converse, let f €
Sﬁzgm(vﬂ ©). We need only to show that each function f of the class My (Y, p) satisfies
the coefficient inequality (2.1). Since f € My (Y, p), we have by definition
P(IL ™ ()
(p—1) I " fP)+pP(ST ™ (=)

G -
e e ey T (1 2Y)

—1

<1, ze€A.

That is
Z;o:l(l —p)(n+ 1)Unanpn+1

—2(1=9) + 302 {1+ (1 =20)p}n + (1 — 29)(p — 1)] Bpa, Pt

Since |Re(z)| < |z| = r for z € C thus by taking P = rI (0 < r < 1), from the above inequality
we have

<1

| 01 (1= )0+ )0, B
2(1=0) = S {1+ (L= 20)g}n + (1= 20)( = D] Butar™ 1] S

and letting r — 17, yields the assertion (2.1) of Theorem 1. >

)

Fixing p = 0, we get the following.
Corollary 2. Let f € ¥p be given by (1.2). Then f € &, (¥, p) if and only if

oo

> (n+9)Bhan <1 -0

n=1
Our next result gives the coefficient estimates for functions in M5 (Y, ).
Theorem 2. If f € M, (9, p), then
1—9

an < , n=1273,...
" {n—dp+p 1)} 0,
The result is sharp for the functions F,(z) given by
1 1-—9
Fo.(z)=-+ 2", n=123,...
n(2) z {n—Ynp+p—-1)}0,

< If f e MEy™ (Y, p), then for each n we have

{n—=9(np+p—1)} Bnay, < Z{n— (np+p—1}a, <1

Therefore, we have

1—9
n—>9np+p—1)}0,

an<{
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Since

1-9
z
{n - 79(”@"" o= 1)} On,
satisfies the conditions of Theorem 1, F,,(z) € M, (9, p) and the equality is attained for

this function. >
For © = 0, we have the following corollary.

Corollary 3. If f € G5 (9, p), then

1-9
WS p=1,2,3,....
“Sres, "
Theorem 3. If f € My (9, p), then
1 1-9 1 1-9
- _ < = , P=r (0 1).
r (149 —299p)0 < 7@l 7°+(1+79—279p)151r r(0<r<l)
The result is sharp for
F&) = o+ g (2.
Tz (40— 2000, '

where Uy as given in (1.15).
< Since f(2) =1 +32°°, a,2", we have

—_

|| f(P —+ anr —{—TZan

r

Taking into account the inequality

we arrive at an estimate

Similarly
1 1-9

Py > - —
@I =7 = a5 2000,
The result is sharp for f(z) = % + mz. >

Similarly we have the following:
Theorem 4. If f € My (9, p), then
1 1-9 1 1-—9
- _ <= , P
2 (149 —20p)0y < IF @)l 2T (149 —29p)0;
The result is sharp for the function given by (2.2).

=r (0<r<l).

3. Radius of Starlikeness

The radii of starlikeness and convexity are given by the following theorems for the class
mt’T SRy m(ﬂ p)

Theorem 5. Let the function f belong to the class My (Y, 0). Then f is
meromorphically starlike of order p (0 < p < 1) in |z| < r1 (9, p, p), where

(1= p)ln — d(np + p — D]B, |71
CEET . on>1. (3.1)

1 (197 2, p) = inf
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< Let the function f € M! (p,9) be of the form (1.2). If 0 < r < (9, @, p), then by (3.1)

n+1 < (1_p)[n_79(np+p_1)]6n

T 3.2
Rl o
for all n € N. From (3.2) we get Tf—i‘pgrm‘l < [niﬂ(n?fgil)] O for all n € N, thus
n+p e n— np—l—p—l)]U
Zl - < Z an <1 (3.3)

because of (2.1). If f € ¥ p, then by Lemma 1 the function f is meromorphically starlike of
order p in |z| < r if and only if
oo
Z(n + plapr™t <1 - p. (3.4)
n=1
Therefore, (3.3) and (3.4) give that f is meromorphically starlike of order p in |2| < r <
™ (197 £, p) >
Suppose that there exists a number 7, 7 > r1(9, @, p), such that each f € My (p,V) is
meromorphically starlike of order p in |z| <7 < 1. The function

1-9

1 n
&) = ot o DB,

is in the class My (p,9), thus it should satisfy (3.4) with 7+

Z(n + P)anym—i_l <l-p, (3.5)
n=1
while the left-hand side of (3.5) becomes
(1-9) (1-9)

~n+1
(n+mm_ﬂmp+p_m6“ﬂ'>m+pn

(1—p)n—dnp+p—1)]0,
(n+p)(1—=7)
which contradicts (3.5). Therefore, the number (¢, p, p) in Theorem 5 cannot be replaced

with a grater number. This means that r1(J, p,p) is so called radius of meromorphically
starlikness of order p for the class M, (p, 9).

n—"9(np+p—1)]0;

REMARK 1. The above results give an improvement or better bound for order of starli-
keness for f € My (U, p) compared to the results given in [32, 33].

4. Neighborhoods for the Class M, (Y, p)

In this section, we determine the neighborhood for the class ¢y (9, p), which we define
as follows:

DEFINITION 3. A function f € ¥, is said to be in the class My (9, p) if there exists a
function g € My (Y, p) such that

H——l <l—7v  (zeA, 0<y<1). (4.1)
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Following the earlier works on neighborhoods of analytic functions by Goodman [34] and
Ruscheweyh [35], we define the §-neighborhood of a function f € ¥, by

Ns(f) == {geE :——i—Zb 2" and Zn\an— n| < } (4.2)

Theorem 6. If g € My (9, p) and

5(1+ 9 — 200)04

=1- 4.3
then Ns(g) C Moy (9, p).
< Let f € Ns(g). Then we find from (4.2) that
Z nla, — by| <9, (4.4)
n=1
which implies the coefficient inequality
D lan —ba| <6, neN. (4.5)
n=1
Since g € My (Y, p), we have (cf. equation (2.1))
—
by, < 4.6
Z (1+ 19 — 299)0¢’ (4.6)

so that

f(®)) Yomeglan —bp| (1409 —-20p)0;
|56 - < St - e

provided 7 is given by (4.3). Hence, by definition, f € M7 (9, p) for v given by (4.3), which
completes the proof. >

5. Closure Theorems

Let the functions Fj(z) be given by
1 o
z):;+zlfn,kz", k=1,2,...,m. (5.1)
n=

We shall prove the following closure theorems for the class My (9, o).

Theorem 7. Let the function Fy(z) defined by (5.1) be in the class My (9, p) for every
k=1,2,...,m. Then the function f(z) defined by

1 00
Z):;+Z:1anzn, Qp 2
n=

(9, p), whenever a,, = % Sy fagn=12,...

\
o

T,Kk, M

belongs to the class M,
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< Since F,(z) € My ™ (9, ), it follows from Theorem 1 that

S {n=dnp+p-1)}0nfar<1-9 (5.2)

for every kK =1,2,...,m. Hence

Z{n— (np+p— 1)} Bpay = Z{n— (np+p—1)} 0, <;ank>
n=1
:—z(z{n— nmp—nwnfnk)\ 1o,

= n=1

By Theorem 1 we arrive at the required conclusion f(z) € Mo (Y, p). >

Theorem 8. The class M, (9, p) is closed under convex linear combination.

< Let the function Fj(2) given by (5.1) be in the class MM ;"™ (9, ). Then it is enough to
show that the function

H(z) =vFi(z2) + (1 —v)Fy(z), 0<p<1,

is also in the class My (9, p). Since for 0 < v < 1

)

1 o
:;-FZ Vfni+ (1 —v)fn2]2",
n=1

we observe that

Z {n - ﬂ(np—i— - 1)} Un[”fn,l + (1 - V)fn,Q]

n=1
=vY {n—=9np+p—1)}0nfur+(1—1) Y {n—9mnp+p—1)}Vnfas <19
n=1 n=1

By Theorem 1, we have H(z) € My (Y, p)

Theorem 9. Let Fy(z) = 1 and F,(z) = 1 + - ﬂ(n;)JrZ ny5, 2 forn =1,2,... Then

f(z) € ME™ (9, p) if and only if f(z) can be expressed in the form f(z) = > o7 vnFn(2),
where v, > 0 and > jvp = 1.

< Let

> [ vn(1 =)

= F — — n

e M TRV

Then
> 1-9 n—dnp+p—-1)10,
= :1— gl.
nzl”" n—9(ng+p— 1)} 0, 1-9) nzly" Yo

By Theorem 1, we have f(z) € My (9, p).

Conversely, let f(z) € My"™ (Y, p). In view of Theorem 2, we have
1—-9

n < )

{n - 79(”@"" 2 — 1)}Un

n=12...,
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and we may take

{n—9np+p—1)}0,
= Gn,
1-9

and vy =1—3 22 vy Then f(2) => 7 qvpnEn(z). >

n=1

Un n=12...,

6. Partial Sums

Silverman [36] determined sharp lower bounds on the real part of the quotients between
the normalized starlike or convex functions and their sequences of partial sums. As a natural
extension, it would be interesting to look for results similar to those by Silverman for
meromorphic univalent functions. In this section, motivated essentially by the work of
Silverman [36] and Cho and Owa [10] we will investigate the ratio of a function of the form

fz) = % +) a2, (6.1)
n=1

to its sequence of partial sums

k
1 1 n
fi(z) = Z and fi(z) = i Zanz , (6.2)
n=1
when the coefficients are sufficiently small to satisfy the condition analogous to

d {n—dnp+p-1)}0,a, <1-0.

n=1

For the sake of brevity we rewrite it as

> Anlan| <1 -9, (6.3)
n=1
where
Ay i=n—9Y(np+p—1)]0,. (6.4)

More precisely we will determine sharp lower bounds for Re{ f(z)/fx(z)} and Re{fx(2)/f(2)}.

In this connection we make use of the well known results that Re { izgg} >0 (z € A)if

and only if
o
w(z) = chz"
n=1

satisfies the inequality |w(z)| < |z|. Unless otherwise stated, we will assume that f is of the
form (1.2) and its sequence of partial sums is denoted by

k
1
fi(z) = 2 + Zlanz".
n=

Theorem 10. Let f(z) € ¥p(¥,p) given by (6.1) satisfiy condition (2.1). Then

f(z) Apa(p,?) —1+9
Re{ } > ) , z€eU, (6.5)
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where

1-—19, n=12,3,...,k;
Ak+1(paﬁ)7 n:k+17k+27

An(p,0) 2 {

The result (6.5) is sharp with the function given by

1 1=0  pn
zZ) = — + zZ .
/) 2 Apgi(p,9)

< Define the function w(z) by

L+w(z) A, v) [f(z) ~ Apa(p, ) 149
1—w(z) 1=9 [ fi(2) Ap11(p, 0)

" el 4 (Renlen) n+1
14+ > apz" + <1f79’) Yo apz
- nt - n=htl . (6.8)

14+ > apznt!

n=1

It suffices to show that |w(z)| < 1. Now, from (6.8) we can write

A 9 S 1
( ;T_(g )) S ap™t

n=k+1
w(z) = - o .
2425 apz"tl 4+ (%ﬁm) S apznt!
n=1 k=n+1
Next we estimate -
A R
(2552) 5 o
n
w(z)] < e
2-2 z jan] = (2252) 5 Janl
n=k+1

Now [|w(P)|| < 1, if

2<Ak41r1_(%79)> 37 laal < 2—22\%\

n=k+1

or, equivalently,

k 0o
Ak 1(@,19)
IIEETICL WP

n=1 n=k+1
Due to the condition (2.1), it is sufficient to show that

k 00 0o
Ak+1 0, 9) Ap(p, )
n=1 | n|+ — n:k+1|an| \nzl 1-9 |an|

which is equivalent to

1
n=k+1

n=1
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To see that the function given by (6.7) gives the sharp result, we observe that for z = re'm/k
1—9 1—9 A P —149
1(z) _ — "1 = k+1(, ) + ,  whenr— 17,
M) Aa(p,9) Ajt1(p,9) Ajt1(p,9)

which shows the bound (6.5) is the best possible for each k € N. >

7. Integral Operators

In this section, we consider integral transforms of functions in the class My (9, p).

Theorem 11. Let the function f(z) given by (1) be in My (9, p). Then the integral
operator

1
F(z):c/ucf(uz)du, 0<u<l1, 0<c<oo,
0

is in M, (8, ), where
(c+2){1+9—29p} —c(1—9)
c(1=9{1—-2p}+ (14+9){1—2p}(c+2)

1-9
:+ TF9—20010: 7

5:

The result is sharp for the function f(z) =
< Let f(z) € My ™ (Y, p). Then

1 1 o1 . o
F(z) = c/ucf(uz) du = c/ . nrem | du = i mfn
0 0 n=1 n=1
It is sufficient to show that
o0
-9 -1

(c+n+1)(1—-0)

n=1

Since f € My (Y, p), we have

nan < 1.

Z{n— np+p D}es

Note that (7.1) is satisfied, if

c{n—dnp+p-1}0n _ {n-dnp+po— 1D}V
(c+n+)(1=06  ° (1—9) '

Rewriting the inequality, we have

c{n—90np+p—-1}1-9)<(c+n+1)(1—-9){n+9—9p(1+n)}U,.
Solving for §, we have

(c+tn+{n—d(np+p—1)}—cn(l—17)

o< c1-=9N{1-pl+n)}+{n—"Fnp+p—1)}(c+n+1)

= F(n).

A simple computation will show that F(n) is increasing and F(n) > F(1). Using this, the
results follows. >
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For the choice of p = 0, we have the following result of Uralegaddi and Ganigi [9].
Corollary 4. Let the function f(z) defined by (1) be in ¥7(¢9). Then the integral operator

1
F(z):c/ucf(uz)du, 0<u<l, 0<e<oo,
0
is in 325(65), where 0 = %. The result is sharp for the function
1 1-9
T& =S+

Also we have the following:
Theorem 12. Let f(z), given by (1), be in zm?g””(q?, 0),

F(z):%[(c—i—l)f()—i—zf ZHnH I e 0. (7.2)
Then F(z) is in M, (9, p) for |z| < (9, p, B), where

_ c(1—B){n—dmp+p-1)} ¥l
r(9.9.5) _H%f((1_0)(C+n+1){n_ﬁ(np+p_l)}>

., n=1,23,...

The result is sharp for the function f,(z) = % + mz", n=123,...

< Let w = oD fz(J; /)(ﬁpz 7o) Then it is sufficient to show that
w—1 <1
w+1-28 ’
A computation shows that this is satisfied, if
o
— —1 1
Z {n—Bnp+p )} (e+n+ )anUnHPHnJrl < 1. (7.3)

(1-p)c
Since f € Moy (Y, p), by Theorem 1, we have

3 (n=dnp+9-1))0n,
1-9
n=1
The equation (7.3) is satisfied, if
{n—PBnp+p—-1)}(c+n+1)
(1—=p)e

Solving for |z|, we get the result. >

|n+1 < {n B 79(”@ +p— 1)} Unan
= 1-9 '

Opanlz

For the choice of p = 0, we have the following result of Uralegaddi and Ganigi [9].

Corollary 5. Let the function f(z) defined by (1) be in 7 () and F(z) given by (7.2).
Then F(z) is in X3(9) for |z| < (¥, B), where

. c(1=p)(n+9) o B
T(ﬂ’ﬁ)_1%f<(1—ﬂ)(c+n+1)(n—|—ﬁ)> , n=1,23,...

The result is sharp for the function f,(z) = % + % 2", n=1,2,3,...
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Conclusion. The interplay of geometry and analysis signifies a vital aspect of the research
in the complex functions theory. The rapid progress in this area is directly related to the
relationship that exists between the analytic structure and the geometric behavior of functions.
In the current study, we introduced a new class of meromorphic functions that is related to
the Mittag-Leffler function based on the Hilbert space operator, and we found some sufficient
and necessary conditions regarding the properties of this subclass. For further research we are
intended to study certain classes related to functions with respect to fixed second coefficients
associated with Mittag-Leffler functions and majorization results.
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O HOBOM KJIACCE MEPOMOP®HBIX OYHKIIUIA,
ACCOLIMMPOBAHHOM C ®YHKIUWEN MUTTAT-JIEQ@DJIEPA

Mypyrycyugapamypru It u Bumxas K.!

! Texnomormueckuit uacruryT Besmiopa, ITIKoa mepesoBbx Hayk,
WNunusa, 632014, Tenneccu, Bemnop
E-mail: gmsmoorthy@yahoo.com, kvijaya@vit.ac.in

Awnnoranusi. @yuknns Murrar-Jledbdirepa ecrecTBeHHBIM 00pa30M BO3HUKAET IpU perteHnn auddepen-
[IMAJbHBIX U WHTErPAIbHBIX YPABHEHUN JPOOHOTO MOPSIKA, U OCOOEHHO, TP U3yIe€HUU JPOOHOTO 0OODOITEeHMsT
KMHETHYECKOI'0 yPaBHEHUs, CIyJaiiHbIX Osy»Kmanuii, noseroB Jleu, cynepauddy3noHHOro nepenoca u mnpu
U3yYeHNH CJIOKHBIX CUCTeM. B HaCTOsIIIIEM HCCIeJOBAHIN aBTOPbI OLPeIeIsIoT HOBbI Kiaacc Ny (9, p) Mepo-
MOpdHBIX DYHKIMIA, ONPEJEEHHBIX B TPOKOaoToM equanaaoM Kpyre A* := {z € C: 0 < |z| < 1} na ocuose
dyuknnn Murrar-Jledbdiaepa. [logpobro obcyzka0Tcsi €ro XxapakTepHble CBOHCTBA, TaKhe Kak KOI(MdOUIM-
€HTHbIE HEPABEHCTBA, HEPABEHCTBA POCTa, M MCKaXKEeHMsl, a TAK’Ke Pe3yJIbTaTsl 3aMblkanus 1y1st [ € MOy (Y, p).
PaccmarpuBarorcst cBoiicTBa HEKOTOPOI'O MHTEI'PAJIBLHOIO OIIEPaTOpPa U €ro 00PATHOI0, OIPEIEJIEHHOrO Ha KJIac-
ce MI 5 (9, ). omydensr koaduIEeHTHEIE HEPABEHCTBA, HEPABEHCTBA POCTA I MCKAXKEHH, 8 TAK¥Ke PE3YIIb-
TaThbl 3aMBIKAHUs. YCTAHOBJIEHBI TAKYKe HEKOTOPBIE PEe3YJIbTaThl, KACAIOIUECs OKPECTHOCTEH M YACTUIHBIX
CyMM MepPOMODPMHBIX (DYHKINN B 9TOM HOBOM KJjacce. Y Ka3aHbl HEKOTODbIE HOBBIE ITOJIKJIACCHI M XapaKTePH-
CTUYECKHE UX CBOWCTBA, CIIENUAJIM3UPYsl HapaMeTpPbl, KOTOPbIE SBJISIOTCS HOBBLIMU M HE H3ydYaJuCh paHee B
cBsasu ¢ pyarnusyvu Murrar-Jledbdaepa.

KuroueBrbie cioBa: MmepoMopdHble DYHKINN, 3B€30000pa3Hast MYHKIN, CBEPTKA, MOJOXKUTEIbHBIE KO-
s dunmrenTsr, KO3DDUINEHTHBIE HEPABEHCTBA, HHTErPAJIbHBIN onepaTop, dyuknus Murrar-Jleddirepa, ome-
parop I'mibbepToBa mpocTpaHcTBa.
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