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1. Introduction and Setting Up the Problem

Fractional calculus plays an important role in mathematical modeling in many scientific

and engineering disciplines. They are used in the modeling of many physical and chemical
processes and engineering (see, e. g., [1-7]). A fractional integro-differential equation can be
used to simulate a wide range of problems in the basic sciences, many scientists have focused
their attention on presenting the solutions for these systems. That equation has played a
significant role in finding solutions using diverse methods, which is in line with the rapid
development in finding the answers to diverse problems originating from the basic sciences.

The linear/nonlinear equations fractional integro-differential equation has various uses in
fluid mechanics [8|, Stokes flow [9], airfoil [10], quantum mechanics [11], integral models [12],
mathematical engineering [13], nuclear physics [14]| and the theory of laser [15].
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Other studies [16-21] demonstrate several interesting features of the fractional diffusion-
wave equations, which represent a peculiar union of properties typical for second-order
parabolic and wave differential equations. Fractional evolution inclusions are an important
form of differential inclusions within nonlinear mathematical analysis. They are generalizations
of the much more widely developed fractional evolution equations (such as time-fractional
diffusion equations) seen through the lens of multivariate analysis. Compared to fractional
evolution equations, research on the theory of fractional differential inclusions is however
only in its initial stage of development. This is important because differential models with
the fractional derivative provide an excellent instrument for the description of memory and
hereditary properties, and have recently been proven valuable tools in the modeling of many
physical phenomena (see, [22] and the references therein).

According to the fractional order «, the diffusion process can be specified as sub-diffusion
(a € (0,1)) and super-diffusion (o € (1,2)), respectively. There is abundant literature
on the studies of fractional equations on various aspects, such as physical backgrounds,
weak solutions, and maximum principle and numerical methods (see, [23] and the references
therein).

Practical needs often lead to problems in determining the coefficients, kernel, or the right-
hand side of a differential equation from certain known information about its solution. Such
problems have received the name inverse problems of mathematical physics. Inverse problems
arise in various domains of human activity, such as seismology, prospecting for mineral
deposits, biology, medical visualization, computer-aided tomography, the remote sounding of
Earth, spectral analysis, nondestructive control, etc., (see [24-26]). In this paper, we discuss
an inverse problem of determining a source term only depending on the time in a fractional-
differential equation by the measurement data of time trace at a fixed point x;.

Let Qg = Q x (0,T) for a given time T' > 0, where Q be a bounded domain in R? with
sufficiently smooth boundary dQ and ©I = 9Q x (0,T). We consider a fractional integro-
differential equation with a fractional derivative in time ¢:

Ofu(x,t) + Au(x, t) = q(t)ur(x,t) + kxu(x,t) + f(x,1), (x,t) € QF, (1.1)

where 1 < a < 2 and 0fu(x,t) is the left Caputo fractional derivative with respect to ¢ and
defined by [27]

¢
o t—7)" () dr, m—1<a<m, meN,
O o(t) = 0/

v(’”)(), a=m €N,

I'(-) is the Gamma function and the operator A is a symmetric uniformly elliptic operator

defined on Z(A) = H%(Q) N H} () given by

d
Av(x,t) = — Z aim] <aij(x) a%z v(x,t)) +e(x)v(x,t), (x,t) € QY

ij=1

x € Q and there exists

in which the coefficient satisfy azj =aj; € CYN), ce C’(ﬁ) c(x) =0
€ Q, ¢ € RY and Laplace

a constant g > 0 such that z” 1aij( x)6&; > MZ@ &P vx

convolution k * g(t fo (t—71)g(T)dr.
We supplement the above fractlonal wave equation with the following initial conditions:

u(x,0) = a(x), w(x,0) =0b(x), x€Q, (1.2)
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and the zero boundary condition:
u(x,t) =0, (x,t) €%, (1.3)

If q(t), k(t), f(x,t), a(x) and b(x) are known, then problem (1.1)-(1.3) is called a direct
problem. The inverse problem in this paper is to reconstruct ¢(t) and k(t) according to
the additional data

u(xi,t) = hi(t), t e (O,T), (1.4)

where h;(t), i = 1,2, are given functions and x; € Q, i = 1,2, are given numbers.

We investigate the following inverse problem.

Inverse problem. Find u € C([0,T]; 2 (A7) n C*([0,T); 2(A")), ¢ € C*[0,T] and
k € C[0,T] to satisfy (1.1)-(1.3) and the additional measurement (1.4), where Z(A7) is
a Hilbert space with some positive constant v, see (1.6).

For the convenience of the reader, we present here the necessary definitions from functional
analysis and fractional calculus theory.

For integers m, we denote H™(Q2) = W™2(Q) (see [28]) and HJ*(Q) is the closure of
C°(€) in the norm of space H™(£2). For a given Banach space V on (£2), we use the notation
C™(]0,T]; V) to denote the following space:

c™([0,T);V) == {u: HBfu(t)Hv is continuous in ¢ on [0,7T] V0 < j < m}.

We endow C™([0,T];V) with the following norm making it to be a Banach space:
[ullom o,5v) = D jmp(maxoci<r |07 u(t)|lv). In addition, we define Banach space X1 vy
XT i= C(0, T} 2(AT/2)) A C1([0, T); 2(A7)) with the norm [ullr = [ullc:o 01/
+|[ullor (0,77 2(a7)) - Furthermore, we set Y" = X¢ x C'[0,T] x C[0, T] endowed with the norm
1(w, ¢, B)lyr = [lull x7 + llallerjory + IE o,

It is well-known that the operator A is a symmetric uniformly elliptic operator,
the spectrum of A is entirely composed of eigenvalues, and counting according to
the multiplicities, we can set: 0 < A\; < A2 < ..., lim,, 0 A = 00. By e, € H2(2) N H (),
we denote the orthonormal eigenfunction corresponding to Ay,:

Ae, = Apen, in Q,
en =0, on 0f).

It is well known that, if the coefficients a;j(x), c(x) are real-valued functions and
a;j(x) = aji(x) € L*(Q), c(x) e L>®(2), then the eigenfunction sequence {e,}nen is
a orthonormal basis in L?(Q2). Then for v € R we define a Hilbert space Z(A7) by (see [29])

D(AY) = {u € L*(Q): Z)\fﬂ [(u, e, < oo}, Alu = ZAZ(U, €n)en,
n=1

n=1

equipped with the norm ||ul|g4+) = (Y4 A2 |(u, en)]2)1/2. We note that the norm [|ul| 4+
is stronger than ||lu||z2(q) for v > 0. Since Z(A7) C L?(Q) for v > 0, identifying the
dual of L?(Q) with itself, we have 2(AY) C L?(Q) C (2(A")) and (A7) = (2(A")),
which consists of bounded linear functionals on Z(A7). For u € (A7) and ¢ € (A7),
the value obtained by operating u to ¢ is denoted by _ (-, ->7. P(A~7) is a Hilbert space with

the norm: [|¢f|g(4-) = (>0, byt |— (u, en>q/|2)1/2. We further note that _, (u, ). = (u,¢)
if ue L2(Q) and o€ Z(A7) (see e. g., [30, Chapter V]).
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Moreover, we introduce the Mittag-Leffler function in [27]: E, () = "3, 2% /T\(pk + ),
z € C, with Re(p) > 0 and p € C. It is known that E, ,(2) is an entire function in z € C.

Lemma 1.1. Let 0 < p < 2 and u € R be arbitrary and 0 satisfy wp/2 < 0 < min{m, wp}.
Then there exists a constant ¢ = c(p, i1, 0) > 0 such that |E, ,(2)| < ¢/(14]|2]), 0<|arg(z)| <,
and the asymptotic behavior of E, ,(z) at infinity as follows

Z—n

N
Epu(z) =~ T pn) O(=").
n=1

For the proof, we refer to [31] for example.

Proposition 1.1 [27|. For A > 0, a > 0, § € C and positive integer m € N, we have
dm
dtm

d

pr (1P By g(— M) = tP 2By g1 (= M%), >0,

Eo1(—A) = =X By g mi1(—M), >0,

0% (B (—M%)) = —AEq1(—At%), t>0.

Also, we mention

v (%)
max = 1799 , 0<o<1. (1.5)

y=0 1‘|’y 1+1T9

We now give a similar definition of weak solution to (1.1)—(1.3), which is introduced by [32].

DEFINITION 1.1. We call u a weak solution to (1.1)-(1.3) if (1.1) holds in L?(Q2) and
u(-,t) € HE(Q) for almost all t € (0,T), u,du € C([0,T); Z(A™7)) and

lim [l t) = aH@(A*“f) = lim e (-5 1) = bH@(A*W) =0

with some v > 0. Here v > 0 may depend on a, b.
Throughout this paper, we set vo > d/2+ 1, v > 0 and 1/a < & < 1 such that

d 1
max Z+1,WO+E—6 <7< 7. (1.6)

We make the following assumptions:

(C1) 8%h; € CM0,T), a € (A"t be P(A), f e CY[0,T]; Z2(A"));

(C2) R}(0)g(0) = 92h;(0) + Aa(x;) — fi(0), where f;(t) = f(zs,t), i =1,2;

(C3) a(xi) = hi(0), b(x;) = hi(0), 1 =1,2;

(C4) p(t) = hi(t)h2(0) — Rh(t)h1(0) # 0 and p(t) € C0,T] satisfies the following
inequality: ||p|lc1jo,r) = 1/po > 0, where py is a given positive constant.

REMARK 1.1. In (C1), 9¢h € CY[0,T] implies h; € W>Y(0,T) — HY(0,T) (see [26])
and from this we will be used in Lemma 2.7 below. Furthermore, if we also require that
02h;(0) = 0, then according to Remark 1.1 in [26], h;(t) € C2[0,T] is implied.

REMARK 1.2. (C3) is the consistency condition for our problem (1.1)—(1.4), which guaran-
tees that the inverse problem (1.1)—(1.4) is equivalent to (2.30) and (2.32) (see Lemma 3.3).

Our main result in this paper is the following global existence and uniqueness of our inverse
problem.
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Theorem 1.1. Let (C1)—(C4) hold. Then, there exists a unique solution (u,q, k) € Y of
the inverse problem (1.1)—(1.4) for any T > 0.

The outline of the paper is as follows. In Section 2, we give preliminary results in this
paper, including the existence and uniqueness of the direct problem (1.1)—(1.3), and also
an equivalent problem is presented. In Section 3, the local existence and global uniqueness of
the solution of the inverse problem (1.1)—(1.4) is established by using the Fourier method and
Banach fixed point theorem. Section 4 contains the proof of Theorem 1.1 (existence global in
time). In Section 5, we give an example of the inverse problem (1.1)—(1.4).

2. Preliminary Results

This section presents some preliminary results, including the well-posedness for a fractional
differential equation, an equivalent lemma for our inverse problem, and a technique result,
which will be used to prove our main results.

Let Zo(t)n(x) = Y o0 1 (n,€n) t Eaa(—AntY) en(x), (x,t) € QF, for n € L3(Q).

We first consider the following initial and boundary problems:

ofu(x,t) + Au(x,t) = F(x,t), (x,t) € QF,
u(x,1) = 0, (x,1) € 1, (2.1)
u(x,0) = a(x), w(x,0) =b(x), x €.
Note that if @« = 1 and « = 2, then equation (2.1) represents a parabolic equation and
a hyperbolic equation respectively. Since we are interested mainly in the fractional cases, we

restrict the order ao to 1 < av < 2.
First split (2.1) into the following two initial and boundary value problems:

ofu(x,t) + Av(x,t) =0, (x,t) € QF,
v(x,t) =0, (x,t) € x{, (2.2)
v(x,0) = a(x), v(x,0) =b(x), x€Q,

and
Ofw(x,t) + Aw(x,t) = F(z,t), (x,t) € Q,
w(x,t) =0, (x,t) e 27, (2.3)
w(x,0) =0, w(x,0) =0, x €.

Similarly to Theorem 2.3 in [32], it is easy to obtain the following assertion.

Lemma 2.1. Let a € H*(Q)NH}(Q) and b € H}(2). Let v > 0. Then for the unique weak
solution v € C([0,T); H2(Q) N H(Q)) N CL([0,T); Z2(A™7)) to (2.2), there exists a constant
¢ > 0 satisfying

[o( Ol 2 () + e )l oa—) < e (lallmz) + 10l (@) - (2.4)

Then we have

o) = Zi(Bale) + 20N, (1) € QY. o
vi(z,t) = =Y (t)a(z) + Z1(t)b(z), (x,t) € QF, '
using
Zi(t)n(x) = Z(m en)Ea1(=Ant%)en(x),  Y(t)n(z) = Z An (1, en)tailEa,a(_)‘nta)en(x)a
n=1 n=1

the space in C ([0, T); H(Q) N HL(Q)) N CL([0,T); 2(A~7)).
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< The uniqueness of a weak solution is verified similarly to Theorem 2.1 in [32], but
smoothness is taken in a different form. Therefore, here we show only (2.4) inequality.
Using the Lemma 1.1 and (1.5), we have

[0 Fr2gy = D A2 (@5 €n) Bat (= Aat)|* 4 3 A% (b, €0)t B 2(—Aat®)|”
n=1 n=1

P 1/a 2
€l et St (S5 ) e

Using A~ 2/e )\}72/0[

,n=1,2,..., we have

[re HH2(Q ¢ (llallrz(q) + 1017 (q))- (2.6)

Further, as a second equality of (2.5), we have

o O 5 ay Z/\—QV\/\ 19" (a, en) Eaa(—Ant®)|? +Z>\‘ (b, €0) a1 (—Ant®)]?

o (}\ ta)(afl)/a 2
<D Alaen)? | W AZ2oH1=1/e) Z An(b, en)? A20F1/2),
n=1 n

n=1

In view of v > 0, we get )\52(“&1_1/@) < AIZ(VH_UO‘) and )\;2('\/—1—1/2) < )\1_2(%%/2). Now

using Lemma 1.1, and (1.4), we have

7

oe (-, HQ(A 1y < (llall @) + 1617 @) (2.7)

Thus the proof of Lemma 2.1 is complete. >
We introduce the following auxiliary lemmas to obtain the main results.

Lemma 2.2. Let F € C([0,T); 2(AY?)). Then there exists a unique weak solution
w e C([0,T); HA(Q) N HE(Q)) to (2.3) with ofw € C([0,T); L*(Y)). In particular, for any
v > O, we have wy € C([O,T]P@(Aify)), limt_>0 ”’U}(,t)”HQ(Q) = 1imt_>0 Hwt(-,t)H@(Aﬂ) = 0,
Moreover, there exists a constant ¢ > 0 such that

lw(, Ol g2@) + lwe(- Dl ga—) < e+ DIFloo.4;20a1/0) (2.8)
and we have

w(x,t) = /AIY(t —5)F(x,s)ds, (x,t)€QF, (2.9)
0

the function (2.9) holds in the C([0,T]; H*(Q) N HL(Q)) N CL([0,T); 2(A77)).

<1 The uniqueness of the weak solution is proved similarly to Theorem 2.1 in [32]. Therefore,
here we omitted it and we show only regularity, besides (2.8).
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We first have

0o t
|w HLQ(Q):Z /(F(,s),en)(t—s)alEaa( An(t —$)%) ds
n=1 0
[e'e) t 2
< 1&3§t|(A;/aF, ok / NVt = 8) By o (= An(t — 5)%) ds (2.10)
n= 0
= 1/ 2 (Aps™)( Do i 2 2
< Z&?@‘(An Fen)| / T+ e m ds| < cAyp HFHC(Ot p(A1/a) T
n=1 0 n

Furthermore, in a view of the condition of Lemma 2.2, for F' € C([0,T]; 2(A"®)) and by
Lemma 1.1, we have

00 2

HAW("t)Hi?(Q) - Z)‘i
n=1

(F(-,8),en)(t — s)a_lEa,a(—)\n(t —5)Y)ds

o+ O\&

giAi/KF( s en| ds/( s)Za_Q‘Ea,a( n(t—8)* | ds<Z)\ Y (2.11)
0 0

2

ds \; a2/ g

(a 1)/«
X max \(Al/o‘ ] en) | /‘ S C“F“é([o,t];@(Al/a))t2'

0<s<t 1+ )\nsa

By (2.3) and (2.10) we can estimate also [|0fw(,?)lcqom);z2(0)) and we have

limy_,q Hw(-,t)HHg(Q) = 0. Next apply Lemma 1.1, Proposition 1.1, and apply the Cauchy—
Schwarz inequality, and for any v > 0, we have

00 t 2
Hwt(.,t)H;(A_v) :Z / yen)(t — 8)* ?Eaa 1(—Au(t — 5)*)ds
n=1 0
[e'e] t 2
S LA s [(AVIEIC ). ea) [t = B (-2t = 5 ds
n= 0
00 t 2
_2 _E Al/ozF 2 d oz—lE s d
Z ({Igl?gt{( [ ](‘,5),611){ s (5 a,a(_ nS )) S
- 0

0<s<t

< Z)\;QV_Q/O‘ max ‘(Al/o‘[F](-,s),en)‘Q |t°‘_1Eaa —\n to‘ ’< Z)\ 2y=2/a
n=1

2
(2=

n

«a 2 )\nta (a=1)/a
s, | (A7) o)) | 2R

2a
0<s<t

AT HFHC([o,t};@(Al/a))'

Therefore lim;_,q |Jw (-, t)HQQ(A,y) = (0. Thus the proof of Lemma 2.2 is complete. >

By Lemma 2.1 and 2.2, we get the following assertion.

Lemma 2.3. Let a € H*(Q) N H(Q), b€ H(Q) and F(z,t) € C([0,T]; D(AY*)). Then
there exists a unique weak solution u € C([0,T]; H2(Q)NH (Q2))NCL([0,T); Z2(A~7)) to (2.1),
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such that

[u(s )l m2) + lueC Ollga—y < elllallmz@) + bl @) + &+ DIFlcqog.00a170y)] (2:12)

for all t € [0,T], where the constant c is dependent on «, 2 and the coefficients of A, but does
not depend of T'. Furthermore, we have

u(x,t) = Z1(t)a(x) + Z2(t)b(x) + /A_lY(t —5)F(x,s)ds, (x,t)€QF, (2.13)
0

where Z;(t)[-] (j = 1,2) and Y (t)[-] are defined above.
The next two lemmas are regularity results of the solution u of the problem (2.1).

Lemma 2.4. Let a € 2(A"1/%), b e 2(AY) and F € C([0,T]; 2(A7)). Let 1/a < e < 1.
Then u € X! such that

[uC, Ol gar+1/ay + lue(, D)l gam)

o e (2.14)
< cllall gpavsrray + Bllocary + (7 + D) | Fllcqo20a))-

<1 By Lemma 1.1 and the Cauchy—Schwarz inequality, we have

o

Hu(a t)Hi)(A“/H/a) = Z A?—H/a |(a, en)Ea,l(—)\nta)‘Q + Z )\27-1-2/04 £

n=1 n=1
2

x | (b, en)Ea,Q(_Anta)ﬁJrz AZv+2/a

n=1

¢
/ )yen)(t — 8) LBy 0(—An(t—5)%) ds
0
2.15
2 2742 2 (Ant®) /o2 219
<c Z)\“ﬁ/a‘ae ‘ +Z)\7 sen)? <1+)\ ta>
n=1 n
2
/Al/a — 8) " By a(=An(t — 5)) ds

0<s<t

+Z max | (A7[F ), €n)

From Lemma 1.1, we have

c _ _
Eoo(=Mn(t —5)%) < T4 —s) < e, (t—s)"* (2.16)
for any 0 < e < 1. Let 1/a < € < 1. Because of these inequalities, rewrite the inequality (2.15)
as follows

Hu H/ Avti/a) 2” H/Awﬂ/a +62HijA~,
: 2
+C2ZOIE?X<t‘ Aﬂ/ 8)’en)|2 /)\%L/ae(t . S)afaefl ds

0

2)\2/0: 2€t2a (1—¢ ‘

S CQHGHQ(MHM) + C2HbH@(m ‘FHC(Ot 1;2(A7))"

As a result, we get

Hu('7t)H@(A'v+1/a) < C(Oé)(”aH@(mﬂ/a) + HbH@(m) + ta(l_e)HFHC’([O,t];@(A“f)))' (2.17)
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Furthermore, by Lemma 2.3, we have

= Z {=Xt* Ha, en) Eaa(—Ant®) + (b, en) Ea1(—Ant®) } en(x)

n=1

; (2.18)
—i—Z{/ s),en)(t —5)* 2By am1(—A (t—s)a)ds} en(x).
0
Therefore, applying (1.5), Lemma 1.1 again, and \, = O(n*%), we have
[eaeC )|y = D0 AN (@5 €0) | [£97 B (=2t | +ZA2{ben\
n=1 n=1
[e'e] ¢ 2
X {Ea71(—)\nt°‘)‘2+2)\%7 / )yen)(t — 8)* 2 En o 1(—Mn(t — 5)*) ds
n=1 0
> Apt)(@=D/a\ 2 > (2.19)
< 2 2v+2/a 2 (An 2 2y 2
<@ YA en) < S W) I LA
t 2
2 TE 2 a—2 ¢
T Z(}E?i{t‘ (A7[F)C5), en) /S 14+ Aps® ds
0
2 2 2,2(a—1 2
Se HaH@(mH/a) t+c HbH@(m) + HFHC([O,t};Q(A’Y))’
Thus,

lue (-, )l 2(amy < c(llall geantrray + 1Bllocary + 2 HIFllco,gacany) (2.20)

for all ¢ € [0,7]. Then we immediately obtain the desired estimate (2.14). This completes
the proof of this lemma. >
It is easy to see that

u(x, t Z)\n a, en)Eq1(—AtY)en(x; —1—2)\ (b, en)tEq 2(—AntY)en(x;)
=1 n=1

(2.21)

—i—Z)\ </ ),en)(t —8)* 1 Eq 0=\ (t—s)o‘)ds)en(xi), i=1,2.
0

The following lemma is valid.
Lemma 2.5. Let a € (A1) b e §(A") and F € C([0,T]; 2(A)). Then there

exists a positive constant ¢ such that

[ Au(xs, )l oor) < e(llallgar+r/ay + [l zcam0) + T2 || Flleqorsaarny), 1=1,2, (2.22)

and

[Aus(xis .y < e(lallgiamorivey + 10l 2av0) + T HIFloqorpaany), = 1,2, (2.23)

where ¢ is dependent on 2, «, v, Yo, d, A1.
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< The estimate (2.22) may get similarly as in [33]. However, the smoothness differs from
the given ones, so we provide the above inequality (2.22) in detail.

We note that A defines the fractional power A% with 8 € R and lwll 28y < CHAﬁuHLQ(Q)
(see, [29]).

Let g = min{€01,602} with 2e91 =0 + 1/0[ —1- d/2 > 0 and 2epgy = v — d/4 — 1/2 > 0.
According to the Sobolev embedding theorem H?3(Q) c C(Q) for B = d/4 + €¢, we have

lenllo@) < e(@llenllnzs@) < e[ A%n || 1) < AR (2.24)

For simplicity, we study Au(x;,t) in three parts, namely Au(x;,t) :=1; + Is + I3. For I,
by Lemma 1.1, and noticing that A, = O(n*?), we have

ILf < Z (a, €n)| | Ba,1 (= Aat ) fen(x:)] < e(2,@) D A0 (a, )| A, C0F/A77Y

n=1 n=1

o0 1/2 / oo
a) ( Z ADo+2/a (g en)\2> <Z )\n2(“/o+1/aﬁl)>
n=1 n=1

(3] 1/2
< e, a)llall g amo+1/0y <Z n—4(%+1/a—6—1)/d> ‘

1/2

By the choice of 3, we have 4(vy + 1/ao — 8 — 1)/d = (d + 891 — 4e9) > 1, which implies
S0 pA00F/a=B-1/d < (v «,d). So, we obtain

L] < e, 070, )all o 1/ (2.25)

Further, by Lemma 1.1 and (1.5), we have the following estimate for Iy:

oo

. > Ant
2] < 3 dal(Bren) B2t len < (6 2) 3 1 en)l 75 5 X
n=1

1/2
)\ ta)l/a
(9, E' 0| ~(yo+1/a—f-1) (€, E: 2%
Q) AL0|(b, en) 1+)\t0‘)\" c(Q, a) A ]ben (2.26)

) 1/2
X (Z >\n2(7°+1/°‘61)> < e(Q, ,70,d) [|b]] 7470
n=1

Next we calculate I5. Here the estimate for I3 as the same as [33] for y—8—1/2 = 2g93—¢g > 0,
and we have

13| < e(Q, )t [|Fl|cooanyy (Yt € [0,T)). (2.27)

According to (2.25)—(2.27), we obtain (2.22).
By directly differentiating (2.21) concerning the variable ¢ and taking into account
Proposition 1.1, we obtain

d = 2 a—1 o = o
aAu(xi,t) = —nzlxn(a, en )t By a(=Ant )en(xi)+;)\n(b, en)Eo1(—Ant®)en(x;)

. ’ (2.28)
—{—Z)\n(/ ), en)(t —8) 2Eaa 1(=An (t—s)a)ds> en(x;) = L+ 1+ Is.
0

n=1
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Let 61 = min{&lo,ﬁn} with 2619 =79 — 1 — d/2 >0 and 2617 =7 — d/~4 —1>0.
By the asymptotic property of the eigenvalues A\, = O(n2/ 4), for Iy, by Lemma 1.1
and (1.5), we have

T <D N (@ en)] 197 [Baa(=Ant®) en(xi)] < e(Q,0) Y A0 |(a,e0)]
n=1 n=1
(}\ ta)(afl)/a o 1/2 co 1/2
n —(yo—p—1 20+2/ax 2 —2(y0—B—1)
B ) <o S we?) ((Son )

. 1/2
< (@, a)llall g a0 +1/a) <Z n_4(y0_ﬁ_1)/d> :

n=1

By choice of B, we have 4(y — f — 1)/d = (d + 8ec10 — 4¢1)/d > 1, which implies
Yoy n~00=F=1/d < ¢(~y, d). So, we obtain

‘11{ c(§2, &, %0, )HaH@(moﬂ/a)- (2.29)

Similarly, we have the following estimate for Io:
B e 0 )\_(’Yo—ﬁ—l)
I < )\n b, n Ea _)\nta n(Xi)| < Q, AN b, n =
o] € 2 AnlBren) 1o (St fen ()] < @) 3 NP1 el 55
(2.30)

o 1/2 0o 1/2
) ( > aze|o, en)\2> <Z n4<%ﬁ1>/d> < e(Q, 2,70, d) |1l (470
n=1 n=1

Further, we estimate Is. By Lemma 1.1 and v — 8 — 1 = 2e1; — &1 > 0, we have

o) ¢ 2
‘13{ Z )\n/ S),en)(t —s)* ZEaa 1(=An(t — 5)%) ds - en(x;)
n=1
o) t 2
2 —2(y—B—1
<l 3 s (e | [ ] o
n=1 0
00 4 2
< (D, ) Z)\gﬂ orgsaxq‘ 5)7%)‘2 /8a2 ds .)\Iz(v—ﬁ—l)_
n=1 0
So that
T3] < (2, 0, M)IIF logog,zant™! (Yt €[0,T)). (2.31)

Finally, by (2.29)-(2.31), we get (2.23) and so complete the proof of this lemma. >

To study the main problem (1.1)—(1.4), we consider the following auxiliary inverse initial
and boundary value problem.

Lemma 2.6. Let (C1)—(C5) be held. Then the problem of finding a solution of (1.1)—(1.4)
is equivalent to the problem of determining the functions u(x,t) € X{, q(t) € C*[0,7] and
k(t) € C[0,T] satisfying

(O u)(x, 1) + Au(x, t) = q(t)ur(x,t) + (k= u)(t) + f(x,1), (x,1) € QF,
u(x,0) = a(x), u(x,0) = b(x), x € Q, (2.32)
u(x,t) =0, (x,t) € ©F,
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and
q(t) = 1% (h2(0)AM[u,1](t) — h1(0)A5[u, 1)(t)), O0<t<LT, (2.33)
k(1) = Dy | o (RO A5[0.0(0) — O A D) | 0<1<T @34

where D, := (d/dt), A;, i = 1,2, are defined by (2.39) below and

(1) = / k(r) dr. (2.35)
0

On the other hand, if (2.32)—(2.34) has a solution and the technical condition (C1)—(C4) holds,
then there exists a solution to the inverse problem (1.1)—(1.4).

REMARK 2.1. From Lemma 2.6, we know that (2.32)—(2.34) is an equivalent form of
the original inverse problem (1.1)-(1.4). So, in the next sections, we discuss (2.32)-(2.34),
other than the original one.

< The solution (u(x,t),q(t),k(t)) € Y{ of our inverse problem (1.1)-(1.4) is also a
solution to the problem (2.32) in Y. Because the problem (2.32) is the same as (1.1)—(1.3).
Therefore, we should show only (2.33) and (2.34). Let the three {u(x,t),q(t), k(t)} functions
be a solution of problem (1.1)—(1.4). Taking into account the conditions of Remark 1.1 and
implies h; € C'[0,T], and fractional differentiating both sides of (1.4) respect to t gives

(08 u)(x4,t) = (O2h) (1),  wg(x4,t) = hi(t), O0<t<T. (2.36)

Setting x = x; in Equation (1.1), the procedure yields

Ofu(x;,t) + Au(x;, t) = q(t)ue(x;,t) +/k:(t —Tu(x;, 7)dr + f(x;,t), i=1,2. (2.37)
0

We note that (¢ fo 7)d1. Then by integration by parts, we get the following equality:
¢ ¢
/k( Yhi(t —7)dT = h; +/lt—7h’ (2.38)
0 0

With the help of (2.36) and (2.38), we can rewrite (2.37) as

Ri(t)q(t) + hi(0)1(t) = 08 hi(t) + Au(xg, t) — (I x hL)(t) — fi(t) == A[u,l](t), i=1,2. (2.39)
Due to (C4), we can solve this system to get (2.33) and

1
I(t) = o0 (R (8)Aa[u, 1](t) — Ry (t) A [u, 1)(1)). (2.40)
Furthermore, by differentiating (2.40) concerning ¢, we get (2.34).
Now we assume that (u,q,k) satisfies (2.32)(2.34). In order to prove that {u,q,k} is
the solution to the inverse problem (1.1)—(1.4), it suffices to show that {u, g, k} satisfies (1.4).
Setting x = x; to the Equation in (2.32), we have

(0 ut) (x4, t) + Au(x;, t) = q(t)ur(x4,t) + (k*u)(t) + fi(t). (2.41)
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On the other hand, from (C2), we easily see that —(h (O)</1/2[ 1](0) — h4(0)A1[u, 1](0)) = 0.
We get (2.40) by integrating (2.34) over [0, ]. From (2.33) and (2.40), we conclude that
) -

Ri(t)a(t) = —hi(0)U(t) + O hi(t) + Au(x;, t) — (Lx h)(¢) — fi(t)
= 07 hi(t) + Aulxi,t) — (k  hi) (1) — filt)
filt) = —hi(t)a(t) + O hi(t) + Au(xi, t) — (k + hi)(t). (2.42)
Then substituting (2.42) into (2.41), and using (C3), we have that P;(t) := u(x;,t) — hi(t),
i =1,2), satisfy

{af‘Pz(t) =4O (t) + (kx R)(t), t>0, (2.43)

Fi(0) = F/(0) = 0.

Then, the fractional initial value problem (2.43) is equivalent to the integral equation (see,

27, p. 199])
() = —— ) Ye(r — s)dr s)ds
Pt) = s !(/ K m) (3) d

s

t t
/ oz 1 / ( )d5—|— a—l / Pl-(s)ds, i:1,2.
0 0

This is a weakly singular homogeneous integral equation, and it has only a trivial solution for
q(t) € C0,T] and k(t) € C[0,T] (see, [27, p. 205]). Then, u(x;,t) — h;i(t) =0, 0 <t < T,
i. e., the condition (1.4) is satisfied. This completes the proof of Lemma 2.6. >

At the end of this section, we give a lemma that will be used to estimate g and k.

Lemma 2.7. Let (C1) hold. Then for all (u,q,k) € Y and | € C[0,T], there exists
a constant ¢ > 0 depending on f, a, b, h;, but independent of T, such that

Al Wl .y < €2+ (T2 + 1) (14 Nlall oo lluellogoryacany)
+ (TP + 1)Kl oo lull oo zaar ey + TV lllero]

where A;, i = 1,2, are the same as those in (2.39) and [(t) is in (2.35).
< By Lemma 2.5 and condition (C1), we see that

(2.44)

(2.45)

H‘/%[U7Z]HC[O’T] < HatahiHC[O,T}+HAu(xivt)HC[0,T]+Hl * héHc[QT}"i_HfiHC[O,T} < HatahiHC[O,T]
"’C(H“H?)(A“/oﬂ/a)"’HbH@(A”/O)"’TQ/QHFHC([O,T};@(AW)))+T1/2||l||C[O,T]Hh;HLz(QT)“‘HfiHC[QT]-
By the definition of F', the last inequality becomes

[ AL, | 0.7 < 108 Rillero,ry + €[llall ggavo+1/ey + [bllgcan)

—1/a

+ T2 (|lgll ooy lwell oo.m1.247y) + A T kllcomllullegomzcartirey (2.46)
+ ||f||0([07T};@(A”)))] + T ||l||C[O,T]Hh;HL2(0,T) + HfiHC[O,T]’

where we have used

o0

— Z)\?{H-Q/a (v,en)2 )\;2/04 < )\1*2/0 ||U 2

Hvui)(A'v) ||_@(A'y+1/a)'

n=1
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On the other hand, direct calculations imply

DA, 1(t) = (05 i) + Aug(xi,t) — (I = R (E) — fi(2). (2.47)
Here we note that [(0) = 0. By Lemma 2.5, we have
HDWV u Z]HC[O,T} < H(atahi)/HC[O,T} + C[”“”.@(Avoﬂ/a) + [1bll 2av0)

+ T (lallcpmlludloqomizan + M T Iklcom lullogo.riewmie) (2.48)
+ ”fHC([OvT};@(A”)))] + T2 Hl/HC Hh,HLQ(OT + Hf HC[O T

(2.46) and (2.48) bring the desired estimate (2.45). This is complete proof of this lemma. >

3. Existence of the Solution to an Inverse Problem

We can now prove the existence of a solution to our inverse problem, i. e., Theorem 1.1,
which proceeds by a fixed point argument. First, we define the function set

Bp,T {(’E q E) € YVO : (X, 0) = a(x), ﬂt(xa 0) = b(X), ’E(X,t) =0,
(x,t) € =1, Jalgg + laloror + [Fllem < 2

Here r is a large constant depending on the initial data a, b, f measurement data h;. For
given (u,q, k) € B, 1, we consider

(0fu)(x,t) + Au(x,t) = F(x,t), (x,t) € QF,
u(x,0) = a(x), w(x,0) =b(x), x€Q, (3.1)
u(x,t) =0, (x,t) € ET,

where F(x,t) = q(t)uy(x,t) + (k*a)(t) + f(x,t), and

q(t) = e (h2(0) M [u, 1 ](t) — h1(0)A2[u, L](t)), (3.2)
B(t) = % (h’l(t)Ji/Q[u,l ](t)p(—t)hg(t)c/i/l[u,l ](t)) (3.3)
to generate (u,q, k), where I(t fo T)dr, A, i = 1,2, are the same as those in (2.39).

By Hoélder’s inequality, we have

t
|G )OI 1y < [ = s /uu M o dr <X ol gl ey (3
0

which implies H(E‘ * U t)HC([O,T];_OZ(A”/)) < A;l/apQT, Furthermore

[e.9]

SN (@t ),en)?

n=1

<pt. (3.5)

~ max g 1| L

2
HqutHC([O,T];Q(AW)) 0<t<T
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Using these results together with f € C1([0,T]; Z(A7)), we have q(t)u;(x,t) +k*u+ f(x,t) €
C([0,T); 2(A)). By Lemma 2.4, the unique solution v € X{ of the problem (3.1), given
by (2.13) satisfies

||UHXOT < C(Ha”@(/ﬁﬂ/a) + HbHQ(A“/) + (Tail + Ta(lie)) ||F||C([O,T};9(A'Y)))- (3.6)

Further, (3.2)-(3.3) define the functions ¢(¢) and k(t) in terms of w. Furthermore, by
Lemma 2.7, we have

(1h1(0)] + [h2(0)] + [|F4 ]l o,y
C1[0,7]

lallcror + kllclom < ¢

+ 1Myl c1po0,17) (1 + (Ta/2 +T* N (1+ l@llcomlluellegom;zcany) (3.7)
+ (Ta/2+1 + Ta) HEHC[O,T]HUHC([QT}?@(AWFUO‘)) + T1/2 H”‘CWO,T}) .
Note I(t fo 7) dr. We obtain
t
1T lleaom = /k:(r) |+ Flopn < @+ D Flgo (3.8)
0 clo,1]
Substituting (3.8) into (3.7) yields
lallcrpor + 1kl e < (D) [1+ gl luellego,m2camy) (3.9)
+ HkHC[O,T]HUHC([QT];@(A"’“/O‘) + HkHC[O,T]]-
This implies that ¢(t) € C*[0,7] and k(t) € C[0,T).
Thus the mapping
Z:Byr — YOT, (ﬂ,(j, E) — (u,q, k) (3.10)

given by (3.1)—(3.3) is well defined.

The next lemma shows that Z is a contraction map on B, 7 for sufficiently small 7" > 0.
More precisely, we have the following result.

Lemma 3.1. Let (C1)-(C5) be hold. For (u,q,k),(U,Q,K) € B.r, define
(u,q,k) = Z(u,q,k), (U,Q,K) = Z({U,Q,K). Then for properly small 7 > 0, we have
(4. K) . < p and

1 _ o
S P (Gt N Sy ST 3)

for all T € (0, 7].

Everywhere the following proof, we use c¢; to denote a constant which depends on €2, a, v,
Y0, A1 and the known functions a, b, f and measurement data h;, i = 1,2, but independent
of pand T.

< First we prove that the operator Z (B, ) C B, for sufficiently small T" and suitable
larger p. To simplify the calculations, we restrict T' € (0, 1]. From Lemma 2.4, (3.4)—(3.6), we
have
lull xr < AT (lall gano /e HIbll o)) +e(To7H +T2072)

x (lg®)aelloo,r,zcamy) + || (5 * D) c0.21.00a0)) T 1 leo o)) (3.12)
<er[L+ (T + 170 (1 + p + pT)].



Determination of a Coefficient and Kernel ... 101

On the other hand, by (3.2)-(3.3), together with Lemma 2.7 and (3.8), we have

lgllcror) + llkllcor < ca (|| [u, ] HCl[O,T] + || A2 [u, 1] HCl[O,T])
<es(L+T2 + 17 + p(T2 + T°7Y) ue|l o o11.2(a7))
+p(T°‘/2+1 + TO‘) HU||C([0,T};@(AW+1/‘1)) + pT1/2(1 + T))
<eg(L+ T2 417 4 p(T2 + T |Jul xr + pT2(1 4 T)),

(3.13)

where we have used the assumption 7' € (0, 1]. Then, adding up (3.12) and (3.13) leads to

(g Ry < e (14 T2 4 790 - ep(T2 4 7o)

x (14T 4 7007 4 p(1+ T) (7071 + 7009 4 712 4 73/2), 19
We choose sufficiently small 71 such that
a1+ T2 4 T) 4 cyp(To02 4 7o) 615)
) (14Tt + 7079 4 p(1+ T)(T*7 + 79079) 4 T2+ T%/2) <,
and therefore, for all T < min{1, 7 } we have
(2@, F)llyz < p (3.16)

That is, Z maps B, r into itself for each fixed 7' € (0, min{1, 7 }]. )
Next, we check the second condition of contractive mapping Z. Let (u,q,k) = Z(u,q, k)
and (U,Q,K) = Z(U,Q, K). Then we obtain that (u — U, ¢ — Q, k — K) satisfies that

u(x,t) —U(x,t) = /A_lY(t —5)F(x,8)ds, (x,t)€QF, (3.17)
and
q(t)—Q(t) = Z%(hQ(O)(t/Vl [, L] (=M [U, L] (£)) =h1 (0) (A2 [w, 1| (t)=A2[U, L] (1)), (3.18)
oK=L (h’l(t)(ﬂz 1))~ AU HO AOA O ALY

where L(t fo 7)dr and F := q(uy — Uy) + (¢ — Q)Up + k* (u—U) + (k — K) x U.
Usmg Lemma 2 4, (3.5) and (3.6), we get

[ — UHxT <e(To Tt [H (‘j_@)ﬁtHC([o,T]g(m))JrH (@ =T al| ¢ jo.11.9:0am)

+ H k K * UHC( 0,171,2(AV)) + Hk *(u— U) HC([O,T},@(AW))] < C(Tail + Ta(lie))
X [H‘j - QHC[O,T}HatHC([O,T};@(m)) + Hﬁt - UtHC([o,T},@(m))HQHC[O,T + Tz)‘_l/a (3.20)

+T2A;1/a|’ﬁ_0“0([0,T] 7

< [|o= K| g 1y 18] oo 1,271/ o Flepon)

< pe(T+ +7o0e )max{l T2\ l/a [Hq_QHC[O,T}_FHE_UHXOT_{_HE_KHC[O,TJ'
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Similarly, by (3.18)—(3.19) and Lemma 2.7, we have

lg = Qllero.ry + Ik — Kllopr) < pe(T2H 4+ T max {1,722/, 7%/2}

i (3.21)
x[lla = Qllerom + 15 = Tll gz + 15 = Kl o)
Therefore, by (3.20) and (3.21), we have
H(u -U,q—Q,k— K)HYT < cp{(Ta + Ta(lfe)) max {1,T2)\1_1°‘}
0 (3.22)

(T 4 70 max {1,720 T2 Y| || - 0, = Qo = Ky

Hence we can choose sufficiently small 7 such that

cp[(T“—{—To‘(lfs)) max {1, TQAII/O{} + (Ta/2+1—|—Ta71) max {1, T2Afl/a, T3/2}] < L (3.23)

[\)

for all T € (0, 72] to obtain

[(w=Ug=Qk = K)llyr <5 [[(@=T, 0= Q.k = K)yr. (3.24)

Estimates (3.16) and (3.24) show that Z is a contraction map on B, for all T' € (0, 7], if we
choose 7 < min{1, 71, 72}. >
To prove the main result, we should prove the following assertion.

Lemma 3.2. Under conditions (C1)—(C5), for given measurement data h;(t) for i = 1,2
n (1.4), if the inverse problem (1.1)~(1.4) has two solutions (uj,q;, k;) € Yi (j = 1,2) for
any time, then (u1,q1, k1) = (u2, g2, k2) in [0, T].

According to Remark 2.1, we know that (2.32)-(2.34) is equivalent to (1.1)-(1.4). So, in
Lemma 3.2 we discuss the global uniqueness of the inverse problem (2.32)-(2.34).

< Given any time T, let (u;,qi,k;), @ = 1,2, be two solutions to the inverse problem
(2.32)-(2.34) in [0, 7] with the regularity (u;,qi,k;) € Y . This implies

Hui,qia kiHYOT < C*, 1= 1,25 (325)

where C* is depending on «, T, initial data ¢ and 1, the known function f and measurement
data h;. . .
Let & =uj; —ug, § = q1 — q2, k = k1 — ko. Then (4, g, k) satisfies

O+ Al = quily + Guag + ky x4+ kxug,  (x,t) € QF,

u(x,0) = u(x,0) =0, x €, (3.26)
a(x,t) = 0, (x,t) € ©7,
and
q(t) = (t) (ho(0)Ad(x1,t) — hi(0)At(xa,t) — L% p), (3.27)
F(t) = ( V() (Ali(xa,t) — 1% hly) — By (t)(Ad(xy, t) — 1 h/1)>7 (3.28)
dt p(t)
where l~( t) =1y — ly and the functions l;, i = 1,2, satisfy [;( fo s)ds. We have to show

(2, k)l y.r = 0. (3.29)
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Define .
a:iﬁ{te(QTL|Hm5ijg>o}. (3.30)

It suffices to prove that o = T'. If (3.30) is not true, then it is obvious that o is well-defined
and satisfies ¢ < T'. Choose € such that 0 < e <T — 0.
Further, by (2.13), we can write the solution @ as

t
() = / A (= 8)F(x,s)ds, (x,1) € QT+, (3.31)
0
where

F(x,t):qlﬁt—i—duzt—i-kl*ﬁ—i—/;:*u}

Then similar to the proofs of Lemma 2.4 and 2.5, we have

lallxg+e < es (e + N o 0 qioiany: (3.32)
and
4565 g < 6 Pl .
|| Ay (x, ')HC[a,aJrs} < et HFHC([a,mLe];@(m))'
From the definition of o, we see that
i=G=k=0 in [0,0]. (3.34)
By the definition of F', and using (3.4), (3.5) and (3.25), we have
0] yove < es(e27 + 2079 <H(J1ﬁtHC([a,a+e];9(m)) + | quatll (o0 2(a7))
+ k1 @l o(ootaz(any) + ||k * U2HC([a,a+e];9(m))> < O (27 4 2179)) (3.35)
% (liellc oo aocmyt Iallciorat A7 elalloqeo ooyt Ar el g )
Due to ¢(o) = 0, then implies
t
ldllcteova = max | [ 45| < clillaiposa: (3.36)
Substituting (3.36) into (3.35), we have
||@||Xg+€ < esC” (Ea_l + Ea(l_g)) max {1’ € >‘1_1/a€} H (ﬂ’ q, ]%) HY:-FS- (3.37)

Note [|gllc1jo,0) = H/;:HC[O,J} = 0. On the other hand, by (3.27), and using (3.33), we have
the following estimate for ¢

hs (0) s (0)
p(t) p(t)
+ 61/2 HpHC[Uv‘7+€] HiHC[mo‘—f—e] < CQC(hZ) (6a/2 + 60*1) <”atHC([o,o+e};9(A’Y))

3/2

1)l (.0 < co (/%462 7) <‘ ) HFHC([U,UH];.@(AW))

Cllo,o+¢€] Cllo,o+¢€]

(3.38)

+e ancl [o,0+¢€] + )\1*1/046 ||a||C([o,o+e};9(A”+1/a))) + C(hz) HEHC[U,0'+6]’
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where we have used that

t

/l%(s) ds| <

max S € H];:HC[o,oJre}'

HiHC[U,UwLe] - o<t<o+e

Similar to (3.38), by (3.28) we can easily estimate for k as follows

H’%HC[U,UH] < C(hi) [610(60‘/2 +e ) (Hﬂtll(J( o,0+e;2(A7)) T € ldllor 0,044

/e (3.39)
+ )‘1 Y € Ha”C([a,a-{—E};@(A'Y‘H/a))) + 63/2HkHC [o,0+€] ]
From (3.37)—(3.39), we obtain
1@ a.B)ly, .. <ChiCOml(aa.k),, .. (3.40)

with lime_, 1o 7(€) = lime_, 10(€*/2 +2e>1 4 €202 ) max{1, ¢, )\Il/ae, €32} = 0, and implying
I(@, g, INf)HYa,a +. = 0 for some sufficiently small positive constant e. This means that
(u1 — u2,q1 — q2, k1 — ko) vanishes in [0,0 + €], which contradicts with the definition of o.
Therefore (3.29) is proved. From here, we can conclude that (uy, g1, k1) = (u2, g2, k2) in [0, 7]
for any time T'. >

4. Proof of the Main Result

In this section, we give proof of the global solubility of the solution to our inverse problem,
i. e., Theorem 1.1.

Lemma 3.1 ensures that there exists a unique solution (u, ¢, k) € Y of the inverse problem
(2.32)—(2.34) for sufficiently small 7 > 0. In this section, we show that the unique solution
(u,q,k) in [0, 7] can be extended to a large time interval [0, 27].

To do this, we consider

(Ofv)(x,t) + Av(x, t) = y(t)ve(x,t) + / k(t — s)u(x,s)ds
+/ (t—s)v(x,8)ds + f(x,t), (x,t)€QL, (4.1)
v(x,7) = u(x,7), v(x,T)= u: (x,7), x €,
v(x,t) =0, (x,t) € ©T
and )
y(t)zm( (0)A[v,07](t) = h1(0)A2[v,17](1)), T<t<T, (4.2)
r(t)zﬁ(“)%“””p@ <>m[vz]<>>7 ier 0
where
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and 7 (t) = ffr(s)ds. Obviously, if we prove that there exists a solution (v,y,r) € Y,I with

some T > 27, then (a,q, k) defined by

_ = J(u,q, k), telo,T],
(2.4, k) = {(v,y,r), t € [r,27], (45)

!

is a solution of the inverse problem (4.1)—(4.3) on the larger interval [0, 27].
We repeat a similar fixed-pointed argument to prove the existence of (v,y,r). Define

an operator R
K: B =Y, (0.9.7) = (v,y,7) (4.6)

with (v,y,7) € B,;,T, where
Bsr ={(0,5,7) € Y\ 1 9(x,7) = u(x,7), 0(x,7) = w(x,7), x € Q,

0(x,1) =0, (x,8) € X7, [0l xr + ¥llerprr) + 17l eprr) < A}

Here v is the solution to the initial and boundary value problem

(000) (x,t) + Av(x,t) = F(x,1), (x,t) € QF,
v(x,T) = u(x,7), v(x,7) =w(x,7), x€EQ, (4.7)
v(x,t) =0, (x,t) € T

where

Flx,t) = 507 1) + (b u)(7) + (F0)(r +0) + f(x,8), () €QT.  (45)
Furthermore, y is the solution of (4.2) in terms of v and r is (4.3). Additionally, we have
u(-,7) € D(A0 /) and wy (-, 7) € D(A™). Indeed, in view of (2.13), u(x, 7) can be written as

u(x,7) = Z1(1)a(x) + Z2(1)b(x) + /A_1Y(T — s)F(x,s)ds (4.9)
0

with F(x,t) = q(t)ue(x,t)+ (kxu)(t)+ f(x,t) € C([0,7]; D(AY)) such that HFHC([OJ};D(M)) <
¢s(p, 7,1, f). Then, by Lemma 1.1, we have

Hu("T)Hi)(AWoﬂ/a) = Z A?O—'—Q/a ‘(a, en)‘Q |Ea,1(_)‘n7a)‘2
n=1

T

JEC. e -9

0

+ 3 AR (b, ) 7 B a(—An7®)|P + D A0t

n=1 n=1

2

< C%1||a“;(,4w0+1/a) + iy Z A0 |(b, en)|

n=1

/(7’ —s)eeelgs
0

By v > 70+ 1/a — €, together with (1.4), we get

(}\nTa)l/a 2

14+ M\, 7@

% Ego(—=An(T — 5)*)ds ?

2
)\;2(7—“/0—1/04%)‘

+ea 3 g |(A7FIC ), en)

. Dl gavo ey < exalllallgao /ey + [bllacar) (4.10)

+ )\;’YJr“foJrl/a—eTa(l—e) HFHC([O,T];@(AV))) )
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According to the (2.18), we have

Z{ AT Hay e0) Eaa(=AT) + (b, €n) Ea1 (A7) } en(2)
(4.11)

+Z{/ 5),en)(T = 8)* 2 Ega_1(—An (T—S)a)ds}en(x).

Then, by Lemma 1.1 and applying (1.4) again, we have

[e.9]

) gy = 352 A2 ea)? |72 B (=) 2 3 A28 b

n=1 n=1
2

/ (F(5), en)(T = 8)* 2 Bt (= An(7 — )% ds
0

)\ 290+2/cx o [(Qnr)leDlenz ) & 270 2
<C15Z>\n (a,en) BT +C11Z>\n (b, €n)

n=1 n=1

T

/sa_zEa7a1(—)\nsa) ds

0

2

(4.12)
)\;27+270

+Z max { (A'[F ,s),en)‘2

0<s<T

< C%GHQH;(A“@H/O‘) + C%1HszJ(AWO) + Z max |(AY[F( ’5)’6")|2

0<s<T

P Bl A ol g+

9 ()\nTa)(a—l)/oz 2

+ max ,8),€n) = )\;2“/+2“/0+2/a727
n

0<S<T

where we have used

t
/sa_zEa7a1(—)\nsa) ds = /di (sa_lEma(—)\nsa)) ds = to‘_lEma(—)\nto‘).
s
0 0

Byy>7+1/a—cforl/a <e <1, we have 2y — 29 — 2/a+ 2 > 0.
Thus,

[ue( D) | g a0y < €17 (llall geano 170y + 0l 2ear0) + 1F o zcany)- (4.13)

Moreover, by (3.12) we have

lollxr < e1sA; 7 (Jul, Pl g1/ + s T loan)) + ero (T = 1)

HT — 1) N (1508 e rry,20a7) I (E * )| oqo.01,2047) + | F * @)l o@rry.aam) (4.14)
+ 1 f e r,2avy)) < c20Ay (o=7) (luls Tl garo+17ay + lue(, Tl 2(a%0))

+en (T =) 4+ (T = 1)) (5 4+ A7 pr + AT VB(T = 1) + ).
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On the other hand, by (4.2), and using (3.33), we have the following estimate for y

HyH(ﬁ[T,T] < [h2(0)] prlucwnﬂ”%[”’ﬁ] H(Jl[T,T} + \h1<0)|Hp’1HcW,T]
2

XH‘/VQ [U’ZT] Hcl[T,T] < Z [C(hi)(l + Hu('aT)Hg(moH/a) + Hut('aT)H@(A"/o))
i=1

+C(hi, i) + C(ha) (T — 1) + (T = ) NFllepn 15 o o)
+C(hi) (T = 1)+ (T = D)) Pl cprmi ol oy ar 17
+Chis (T = )2 4 (T = 7)) 175 B (g + CRC]
< ean([|u(, )| geano /ey + e, Tl gam0)) + cas + coa (T =) + (T = 7))
+ a5 (T — 1) 4 (T = 7)) + co6 (T — 7+ (T — 7)3/?).

(4.15)

The last term becomes from

~

HlAT*hgucl[ﬂT]g{h;(O) I + i (T — )27

’h;,HLl(ﬂT) +

’C[T,T} ‘C[T,T” ’C[T,T} Hh;HL2(T7T)7

here we notice that, by the Sobolev embedding theorem, we have [|h;l[w21(-7) <
cl|0fhillcrjo,r) (see Remark 1.1). Similarly, we have

Irllcprry < 2 (1uls )| pgamo+1/ay + e T | ggan)) + 23 + Gaa (T — 1) (4.16)
F (T —7)*7Y) 4 G5 (T — )2 4 (T — 1)) + é6 (T — 7 + (T — 7)%?).

We set T'— 7 < 1. Combining the estimates (4.14)—(4.16), as a result we have
(v, 5, )y < cor([[ul, Tl garos1my + lue ()l pgar) + cos (T = 1)

+ (T=7) ) (1 7) + a9 (T—=7)*+(T =) ") 4 50 (T—7) 2+ (T—7)*7) (417
+031((T—T)a/2+1 + (T— T)a) +032(T—T+ (T— T)3/2) + c33.
Moreover, using (4.10) and (4.13), by similar calculations to (3.22), we have

HK(Uhyl,Tl) - K(UQ?y2)T2)HYTT
< e [((T — ) (T = 7)) A 4 7) + (T — 1) + (T — 7)1+ (4.18)
+(T— T)a/2 + (T—T)ail +T -7+ (T—T)B/Q] Hvl —UV2,Y1 —Y2,71 —TQHYT.

We choose p such that p > p and cor([Ju(, 7)l| g 4704170y + lue (- T) | 2(a00)) + €33 < p/2. Tt is
easy to see that if we choose p larger, then we could get larger T'— 7 to satisfy

cos (T = 7)1+ (T —7)* ) (1 + 7)
eag (T =) + (T = 7)) g0 (T = 7)*2 + (T — 7)) (4.19)

e (T —7)*PH 4 (T — 7)) + e (T — 7+ (T —7)%?) < £

[\)

Furthermore noticing that (4.19) and (3.15) have the same structure, we can choose T'—7 = 7
to satisfy (4.19), which yields ||[K(v,y,7)[lyr < p, i. e., K(Bsr) C Bpr. Additionally,

1
5 1w =291 =y, m1 =12y - (4.20)

| K (v1,91,71) — K(U%yzﬂ“z)HyTT S 3
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Hence we prove that K is a contraction operator on BﬁT for T'= 27.

Repeating the extension process limited times, we could obtain a solution (u,q, k) € YOT
of the inverse problem (2.32)-(2.34) for any 7. Lemma 2.6 shows that the inverse
problem (2.32)—(2.34) is equivalent to our inverse problem. Consequently, the inverse
problem (1.1)-(1.4) also admits a unique solution (u, ¢, k) in the space X{ x C'[0,T] x C[0, T
for any 7.

5. Example

In this section, as an illustration, we give an example of the inverse problem (1.1)—(1.4)
when d = 2. In this case, we assume that A = —A = —9? — 35. Let Q = (0,1) x (0,1)
be open rectangular. Then in the domain Q7 := {(z,y,t) : (z,y) € Q,0 < t < T} we have
the following problem:

ofu(x,y,t) — Au(z,y,t) = q(t)us(x,y,t) + / k(t — s)u(z,y,s)ds — Aa(z,y)
0

(5.1)
— tAb(z,y) +2(1 —e "+ (15 + 7)) t)b(z,y) — (1 — e a(z,y), (z,y,t) € QF,
with initial
{u(:ﬂ,y, 0) = a(z,y) := sin 27z sin 27y, (x,y) € Q, (5.2)
uy(z,y,0) = b(x,y):= (10 — 3222)ysinrxsiny, (x,y) € Q,
and boundary conditions
u(0,y,t) =u(l,y,t) =0, wu(x,0,t) =u(z,1,t) =0, te(0,7). (5.3)

In the inverse problem, it is required to find the functions ¢(t) k(t), if there are additional
information regarding the solution of the direct problem (1.1)—(1.3):

11 11
— =t =141 - =, t] =t <t<LT. A4

u<4a4a > + ) u<2a2a > ) 0 (5 )
It is not difficult to check that all given data satisfy conditions (C1)—(C4). Then, by Lemma 2.6
the solution of the inverse problem (1.1)—(1.3) is of the form

u(z,t) = sin 27z sin 27y + t(lO — 32x2)y sin 7 sin Ty,

k(t)y=et, qt)=e -1~ (31 + 27T2)t. (5.5)

Of course, the solution of the inverse problem (5.1)—(5.4) also satisfies the conditions of Theo-
rem 1.1.

Conclusion. The weak solubility of a nonlinear inverse boundary value problem for a d-
dimensional fractional diffusion-wave equation with natural initial conditions was studied
in the work. First, the existence and uniqueness of the direct problem were investigated.
The considered problem was reduced to an auxiliary inverse boundary value problem in
a certain sense and its equivalence to the original problem was shown. Then, the local
existence and uniqueness theorem for the auxiliary problem is proved using the Fourier method
and contraction mappings principle. Further, based on the equivalency of these problems,
the global existence and uniqueness theorem for the weak solution of the original inverse
coefficient problem was established for any value of time.

Acknowledgements. The author wishes to express his sincere gratitude to the referee for
the useful suggestions, which helped them to improve the paper.
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ONNPEAE/JEHUE KOSOOUIINEHTA N AJIPA B d-MEPHOM
JPOBHOM MHTEI'PO-INOPEPEHIIMAJIBHOM YPABHEHUNU

Paxmonos A. AL

! Mucruryr maremaruku um. B. Y. PomaHOBCKOTO
Axkanevun Hayk PecnyGimkn Y36ekucras,
Vsb6ekucran, 100174, Tamkent, yi. YHuBepcurerckas, 9;
Byxapckuit rocyiapcTBeHHBI yHUBEPCUTET,
V3bekucran, 705018, Byxapa, ya. M. k6o, 11
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Awnnoranusi. Hacrosamas pabora mOCBsIIeHa MOy Y€HUIO OTHO3HATHOTO PEIIeHs OOPATHOM 3a0a4un JJIst
MHOT'OMEPHOI'O JIPOOHO-BPEMEHHOIO MHTErpPo-IuddepeHInaJbHOrO ypaBHeHusi. B ciiydyae JIONOJTHUTETbHBIX
MAHHBIX PACCMOTPUM OOpaTHyIo 3a7a4dy. HeumsBecTHbIN KOIMDOUITHEHT U SAPO OMHOZHATHO OINPEIEIAIOTCS 10~
[IOJIHUTEJIbHBIMY JIAHHBIMU. VCnosib3ysi TeopeMy O HEIOJBHUXKHOM TOYKe B MOAXOIsnux mnpocrpancrsax Co-
6oJieBa, TOJIyYeHbl TJI0DAbHbIE BO BPEMEHH DEe3yJIbTAaThl CyIECTBOBAHUS W €JMHCTBEHHOCTU STON OOpaTHOM
3asa4n. B pabore ucciiemoBana ciaabasi pa3pennMOCTh HEJTMHEHOM 0OpaTHOM KPAaeBol 3a/1a4n JJIsd d-MepHOI'O
npobuoro auddy3UOHHO-BOTHOBOTO YPABHEHUS C €CTECTBEHHBIMU HAaYaJbHBIMU ycjioBusMu. CHadala ucciie-
JIOBaJIUCh CYIIECTBOBaHWE U €IUHCTBEHHOCTH MpPsIMOil 3aja4un. PaccMmarpuBaemasi mpobjiemMa 3aK/II0Yaiach B
CBeJIeHAa K BCIIOMOTaTeJIbHOM 0OpaTHON KPaeBoil 3ajade B ONPEJEJIEHHOM CMBICJIE U MOKA3aHa €€ SKBUBAJIEHT-
HOCTH WCXOHOHN 3ajiade. 3areM C ucHojib3oBanueM Merona Dypbe U NpUHIMIIA CKUMAIOIUX OTOOparKeHUi
JIOKA3bIBAETCsI JIOKAJIbHASI TEOpEMa CYIIECTBOBAHUS U €JUHCTBEHHOCTH BCIIOMOraTe/bHOM 3amadn. [lasiee Ha
OCHOBE KBUBAJIEHTHOCTH 3TUX 33J/1a9 Obljla yCTAHOBJIEHA IJI0DaJIbHASI T€OpEeMa CYINECTBOBAHUS U €JMHCTBEH-
HOCTH CJ1a00I0 PEIIeHnst NCXOHOM 00paTHON KO3dh bUImeHTHOM 3a1a4u 11715 J1060ro 3nadenus Bpemenu. Jlasee
Ha OCHOBE 9KBUBAJIEHTHOCTHU STHUX 33124 ObLIa yCTAHOBJIEHA ITTIOOAJIbHAS TEOPEMa, CYIIIECTBOBAHUS U € TNHCTBEH-
HOCTH CJIa00T0 peIleHusi UCXOAHON 00paTHON KO MUIIMEHTHON 3a/1a4n JIJIsl JITIOOOr0 3HAYEHUsI BPEMEHH.
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