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1. Introduction

It is well known that differential equations of fractional order play a very important

role in describing some real world problems. Indeed, we can find numerous applications in
viscoelasticity, electrochemistry, control, porous media, electromagnetic, etc. (see [1]). There
has been a significant development in ordinary and partial fractional differential equations in
recent years; see the monographs of Miller and Ross [2], Podlubny [3|, the papers of Abbas
and Benchohra [4, 5], Benchohra et al. [6] and the references therein.

The theory of functional differential equations has emerged as an important branch of

nonlinear analysis. Differential delay equations, or functional differential equations, have been
used in modeling scientific phenomena for many years. Often, it has been assumed that the
delay is either a fixed constant or is given as an integral in which case it is called a distributed
delay, see for instance the books |7, 8] and the paper [9].
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However, complicated situations in which the delay depends on the unknown functions
have been proposed in modeling in recent years (see for instance [10] and the references
therein). These equations are frequently called equations with state-dependent delay.
Existence results, among other things, were derived recently for various classes of functional
differential equations when the delay is depending on the solution. We refer the reader to the
papers by Anguraj et al. [11], Hartung [12|, and Hernandez et al. [13]. In [14], the authors
considered a class of semilinear functional fractional order differential equations with state-
dependent delay.

The first result of this paper deals with the existence of solutions to fractional order initial
value problems (IVP for short), for the system

("Dgu) (t:2) = f (62,01 (0,00, 20 2,00,0))
+ g(t’ Ly u(pl (tvmvu(t,z))7p2(tvmvu(t,z))))’ lf (t’ l‘) € J’

u(t,z) = ¢(t,z), if (t,z) € J, (2)
t = p(t
u(0,z) = P(x),
where ¢(0) = ¢(0), J = [0,a] x [0,b], a,b,a,8 > 0, J = [~a,a] x [-B,b]\[0,a] x [0,b],
€Dy is the standard Caputos fractional derivative of order r = (r1,r2) 6 (0,1] x (0,1],
frg: I xC =R pp:JxC = [~a,a], pp 1 J x C — [-53,b] are given functions,

¢ € C := C(J,R") is a given continuous function with o(t,0) = p(t), ¢(0,z) = ¢(x) for each
(t,x) € J, ¢ :[0,a] = R™, 1 :]0,b] — R™ are given absolutely continuous functions and C
is the space of continuous functions on J. We denote by u . the element of C' defined by
Uy (8, T) = ult +s,2+7), (5,7) € J, here Uz (-, ) represents the history of the state u.
The second result deals with the existence of solutions to fractional order partial differential
equations
(D5 (62) = F (6, U (.00, 2002000,

+9(t Ty U pl(twwt 2))sp2 (620, ac)))) if (t,x) € J,
u(t,z) = ¢(t,z), if (t,z)eJ’, (5)

{ ) (t,z) € J, (6)
),
where ¢, 1) are as in problem : ( 00, a| X (—oo, b]\[0,a] x[0,b], f,g:J x B — R,

I X B — (—o0,a], p2 : J X % — ( 00, b] are given functions, ¢ : J/ — R™ is a given
Continuous function with gb(t,O) = ¢(t), ¢(0,z) = ¢(x) for each (t,x) € J and A is called a
phase space that will be specified in Section 4.

Motivated by the previous papers, we consider the existence result for each of our prob-
lems (1)—(3) and (4)—(6). Our analysis is based upon on a fixed point theorem due to Burton
and Kirk for the sum of contraction and completely continuous operators and a fractio-
nal version of Gronwall’s inequality. We look for sufficient conditions ensuring existence of
solutions for each of our problems. The present results extend those considered with integer
order derivative and those with finite and/or infinite constant delay on bounded domains
in [15-18].

As far as we know, no papers exist in the literature related to fractional order hyperbolic
functional differential equations with state-dependent delay. The aim of this paper is to initiate
this study.
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2. Preliminaries

In this section, we introduce notations, definitions, and preliminary facts which are used
throughout this paper.

By C'(J,R™) we denote the Banach space of all continuous functions from J into R™ with
the norm [[ullec = sup( 2y [[u(t, z)l, where || - [| denotes a suitable complete norm on R".
As usual, by AC(J,R™) we denote the space of absolutely continuous functions from J into R"
and L'(J,R™) we denote the space of Lebesgue-integrable functions u : J — R" with the norm
lullz: = J3' Jo llu(t, @) |dadt.

Now, we give some definitions and properties of fractional calculus.

DEFINITION 2.1 [19]. Let r = (r1,79) € (0,00) x (0,00),60 = (0,0) and for u € L' (J,R"),
the expression

T

(Ipu)(t,x) = 7I‘(r1)1f(r2) // (t—s)~ 1 — 7')7"2_1 u(s,7)drds,
0

where I'(+) is the gamma function, is called the left-sided mixed Riemann-Liouville integral
of order r of u.

In particular, (I§u)(t,z) = u(t, z), (I fo Jo u(s, )drds for almost all (¢,z) € J,
where o = (1,1), For instance, Iju ex1sts for all ri,r2 € (0, oo) (0,00), when ue€ L' (J,R").
Note also that when ue C(J,R"), then (Iju) e C(J,R™), moreover (Iyu)(t,0)= (Iyu)(0,2)=0,
(t,x) € J. By 1 —r we mean (1 —71,1—r3) € (0,1] x (0,1]. Denote by D2, := a?—;w the mixed
second order partial derivative.

DEFINITION 2.2 [19]. Let 7 € (0,1] x (0,1] and u € L'(J, R™). The Caputo fractional-order
derivative of order r of u is defined by the expression

2
(“Dyu)(t,z) = <I91r f‘)taax u) (t, ).

The case o = (1,1) is included and we have (DJu)(t,z) = (°DJu)(t,z) = (D u)(t,z) for
almost all (¢,z) € J.

In the sequel we will make use of the following generalization of Gronwall’s lemma for two
independent variables and singular kernel.

Lemma 2.1 [20]. Let v : J — [0,00) be a real function and w(-,-) be a nonnegative,
locally integrable function on J. If there are constants ¢ > 0 and 0 < rq, ro < 1 such that

<
v(t,r) <w // t—s x_T) drds,

0

then there exists a constant § = 0(r1,re) such that

v(t,z) < w(t, ) +5c// T x—T) drds,

for every (t,x) € J.

Theorem 2.1 (Burton-Kirk [21]). Let X be a Banach space, and A,B : X — X two
operators satisfying: (i) B is a contraction, and (ii) A is completely continuous. Then either

(a) the operator equation uw = A(u) + B(u) has a solution, or

(b) the set & = {u € X : u=AA(u) + AB(%)} is unbounded for A € (0,1).
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3. Existence Results for the Finite Delay Case

In this section, we give our main existence result for problem (1)-(3).

Before starting and proving this result, we give what we mean by a solution of this problem.
Let the space C(q) = C([~a,a] x [-3,b],R"), a,b > 0.

DEFINITION 3.1. A function u € C(44) is said to be a solution of (1)-(3) if u satisfies
equations (1) and (3) on J and the condition (2) on J.

Let f,g € L'(J,R") and consider the following problem

{(CDSU)(M) = f(t,x) +g(t,z), (tx) e,
u(t,O) = “P(t)v u(va) = 1/1(95)’ “P(O) = 1/}(0)

For the existence of solutions for the problem (1)-(3), we need the following lemma.

Lemma 3.1. A function u € C(J,R") is a solution of problem (1) if and only if u(t,x)
satisfies
u(t, z) = z(t, x) + (I f)(t 2) + (Log)(t, @), (t,2) € J, (2)
where z(t,z) = o(t) + ¥(x) — ¢(0).

< Let u(t,z) be a solution of problem (1). Then, taking into account the definition of
the fractional Caputo derivative (“Dfu)(t, ), we have I;~"(DZu)(s,7) = f(t,x) + g(t,z).
Hence, we obtain I} (I;~"D3u)(s,7) = I; f(t,x) + I5g(t, x), then I} (D u)(s,7) = I§ f(t,x) +
Ig(t,z). Since I} (DZu)(s,7) = u(t,z) —u(t,0) — u(0, ) +u(0,0), we have u(t,z) = z(t,z) +
(I5f)(t, ) + (I5g)(t, z). By the definition of the left-sided mixed Riemann-Liouville integral

of order r of f and g, we have .
xT

u(t,x) = z(t,x) + T ) // (t— )"tz — 1)L f(s, 1) drds

0 T

t
// Y1 l(@ — )2 g(s, 1) drds,
0

SO .
1
u(t,z) = z(t,x +7// )1 (@ — )2 [f(s,7) + g(t, )] drds,
) =)+ e Y= (5,7 + (6, 2)]
where z(t,z) = ¢(t) + ¢¥(z) — ¢(0). Now let u(t,z) satisfy (2). It is clear that u(t,x)
satisfies (1). >
As a consequence of Lemma 3.1 we have the following auxiliary result.

Corollary 3.1. The function u € C(44) is a solution of problem (1)-(3) if and only if u
satisfies the equation

t x
u(t,r) = 2(t,x) + // ”71 (x — T)TTI f(s, T, U(S,T)) drds
0 t x
// )T 1 —T)”_lg(s,T,u(s,T)) drds,
0

for all (t,z) € J and the condition (2) on .J.

Set # ::‘%)(vapg_) = {(p1(s,1,u), pa(s,7,u)) : (s,7,u) € J x C, pi(s,7,u) < 0;7=1,2}.
We always assume that p; : J X C — [—ayal, p2 : J x C — [—[3,b] are continuous and the
function (s, ) — u(, ;) is continuous from # into C.
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Our main existence result in this section is based upon the fixed point theorem due to
Burton—Kirk. We will need to introduce the following hypothesis:

(H1) The functions f,g:J x C' — R™ are continuous.

(H2) There exists k > 0 such that ||g(t,z,u) — g(t,z,v)|| < k|lu — v||¢ for any u,v € C
and (t,z) € J.

(H3) There exist p,q € C(J,Ry) such that || f(¢, z,u)| < p(t,x)+q(t, z)||u|c for (t,z) € J
and each u € C.

Theorem 3.1. Assume that hypotheses (H1)—(H3) hold. If

Ka™b"™
T+ DOt D) ®)

then the IVP (1)—(3) has at least one solution on [—«,a] X [—[3,b].

< Transform the problem (1)-(3) into a fixed point problem. Consider the operators
F.G: C(a,b) — C(a,b) defined by,

(6(t,2), t (tw) € J,
(Fu)(t7x) = z(t,x) + 7F(r1)1f‘(7"2) ‘Of‘of(t — 3)7’171(,7; — 7')7’271
X f(S’T’u(pl(SvTvu(s,T))7p2(SvTvu(s,T)))) deS’ (t,ﬂ?) € J’
and ) ~
0, (t,z) € J,
t x
(Gu)(t,2) = worey S (=97 =)t
0 0
x g(S, 7 u(pl(SvTvu(s,T))7P2(577_7u(s,7')))) deS’ (t’ ,I) € J.

The problem of finding the solutions of the IVP (1)—(3) is reduced to finding the solutions
of the operator equation (Fu)(t,z) + (Gu)(t,z) = u(t,z), (t,x) € J. We shall show that
the operators F' and G satisfies all the conditions of Theorem 2.1. The proof will be given in
several steps.

STEP 1. First, we show that F' is continuous.

Let {u,} be a sequence such that u, — u in C(4p). Let 7 > 0 be such that |lu,| < 7
Then

|(Fum)t,) = (P )| < s / / (=51 (@ — )]

X Hf(S, Ty un(pl (S7Tvun(s,‘r))7p2(377—7un(s,7—)))) - f(S, Ty u(pl (syTvu(s,‘r))7p2(377—7u(s,7')))) H drds

(s,m)ed

t x
1 r 1 ro—1
< F(Tl)r(rg) J/ " T) ? sup Hf(s’T’un(pl(SvTvun(s,T))vp2(SvTvun(s,T))))

t x
G tngy) = FG s w)lloo -1
B f(S, 7 u(pl(SvTvu(s,T))7P2(877—7u(s,7)))) H drds < F(Tl)P(Tg) O/O/(t B S) '

trlmef(" "un(-,-))_f(" ’u(,))HOO < a”bme('a ’un(,))_f( ) U )HOO
TlT‘QF(T’l)F(T’Q) = F(T1+1)F(T2—|—1) '
Since f is a continuous function, we have
arlbme('fvun(-,-)) _f( ) U )HOO
F(’I“l + 1)F(’I“2 + 1)

x(z—7)? " drds <

H(Fun)—(FU)HOO< —0 as n— oo.

Thus F' is continuous.
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STEP 2. F' maps bounded sets into bounded sets in C(qp).
Indeed, it is enough show that, for any n > 0, there exists a positive constant £* such that,

for each u € B, = {u € C(qy) : Hu||Oo < n}, we have ||F(u)||co < ¢*. By (Hs) we have for each
(t,x) € J,

T

memwwwwww+m§m5// - !
0

t x
x Hf(S’T7 u(pl(377—7u(s,7))7p2(377—7“(5,7’))))H deS g H (t x)H—i_ //t S rl 1 x T)T271
0
t x
xp(s,7) drds+ 5~ // (t=5)" " (@ =7)""" 4, ) [0o1 (57000 )2 5700000 | A
0 0
ol [ lal
Plloo 1 ro—1 qllcc?]
< |zt x —|— // )T — )27 drds + ———
(2, / ) e

T

t
_ _ oo + llgllocm
t— ri—1 _ 9 1d d < t HpH lem.
<[ [=ar @yt < ety + g
0 0

e [2llo + llgl
Dlloo + 11¢lloon r1pT *
F < 12 =07,
IF oo < Nizlloe + 50 230Gy + 1)
STEP 3. F' maps bounded sets into equicontinuous sets in C'qp).

Let (t1,71), (t2,72) € (0,a] x (0,b], t1 < ta, ¥1 < @2, By be a bounded set of C(, ) as in
Step 2, and let v € B,,. Then

1
F — (Fu)(t < i1, — 2(ta, -
|(Fu)(tz, 22) — (Fu)(ty, z1)|| < [|2(t1, 21) — 2(t2, 22)|| + T ()
t1 1
X [(tQ —8)7’1—1 (1'2—7')7’2—1 — (tl —S)rl_l (1-1 —T)r2_1] Hf(s7 T, u(ﬂl(SJ,U(S,T))702(577771(5,7))))HdeS
00
1 to xo
ri—1 ro—1
+ T(r)T(ra) /(tz — )" @y — )| f (s, u(pl(S,T,u(S’T)),pg(S,T,u(S’T))))H drds
t1 x1
1 t1 x2
_ ri—1 ro—1
Ty J 0" @2 = DT T o i) o)l AT
0 x1
1 to x1
ri—1 ro—1
+ T(r)T(ra) (ta — )" (we — 1) || f (s, u(pl(S,T,u(S’T)),pg(S,T,u(S’T))))H drds
t1 0
< H (t1,21) — 2(t2, @ H e |p”°° + ||Q\|oo77 // )1 (g — )2t
—(t2 — 8)”_1 (g — T)m_l] drds + ———————— HpHOO + HqHOO N // —5)"1 1 T9 — 7-)7’2—1 drds

t1 x1
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||PHoo+HQ||oo77// yi=1 1 Il + 1lloo 1
+ 1= V2" drds + —m—————
2= 7) T (r)T(r2)
i1 Iplloc + Nl
_ N + 1lqllo0 1
X to — 8) Y (wg — )2V drds < ||2(t1, — 2(to, x2)|| + Plico
//( 2 ) (xg —7T) T H (t1, 1) 2 H T(ri+ Dl(ry + 1)

x [”CSQ (ta —t1)"" + 5! (w2 — 1) — (f2 — )" (w2 — 1) + 1127 — tglmﬂ

||pHoo+HQ||oo77 r HpHoo + ||quoo77
to—t1) (o —21)" + thr—(to—1t1)"(xo—21)"
F(r1+1)F(T2+1)(2 ) (@2 =) L(ri 4+ (ry+1) 15 = (t2=t1)" (22— 21)

il ety (a0 € ) 2
[1Pllco + [lglloon [
F(T1+1)F(T2—|—1)
As t1 — t9, xr1 — w9 the right-hand side of the above inequality tends to zero.
The equicontinuity for the cases t1 < t3 < 0, 1 <z < O0and t;] <0 <L tg, v1 <0< 2o 18
obvious. As a consequence of Steps 1 to 3, together with the Arzela—Ascoli theorem, we can
conclude that F': C(,p) — C(qp) is continuous and completely continuous.

STEP 4. We show that GG is a contraction.
Let v,w € C([—a,a] x [-=3,b],R™). Then, for (¢t,z) € [—a,a] X [-0,b],

2.%'52(t2—t1)r1+2t51 (.%'2—1‘1) —i—trl trl Q(tz—tl)rl (1‘2—.%’1)T2].

1 [ ri—1 ro—1
H(Gv)(t,x)—(cw)(t,m)ugmo/o/w—s) (- 7)Y

k
XN (50T Vo s o potsrasir) =1 (87 0Gor (st ) ot ) | A8 < s

xT

t
r1 1 ro—1
X // T) "/U(pl(377—7u(s,7))7p2(377—7u(s,7'))) B w(pl (S,T,U(S’T)),pQ(S,T,U(S’T))) HC deS
0

t x
k7
_ t— r1—1 _ T‘g—ld d < _ )
Jo—ul [ [t=art @yt drds < gt o~ wle

c_ Kk
S ()T (r2)

Consequently,
ka™b

w)HC(a’b) S F(?“l + 1) P(?"Q + 1)
Since by (3), G is a contraction.

STEP 5 (a priori bounds). Now it remains to show that the set & = {u € C(J,R) :
u = AF(u) + AG(})} for some X € (0,1) is bounded.

Let u € &, then and u = AF(u) + AG(%) for some 0 < A < 1. Thus for each (¢,z) € J,
we have

[(Gv) - lv —wlc

xT

t
>\ T T
u(t,x):)\z(t,x)—{—ir(rl)r(m) // (t—s)"Ha—71)2 1f(s T, u(m(SJ,U(S,T)),pz(smu(s,r)))) drds
0

xT

t
A / / ) 1 ro—1 < Upr(s,myugs ).p2(s,7mu(s ) >
+ = = —7)"2 S, T, : drds.
L0 ) J *e X
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This implies by (H2) and (H3) that, for each (¢,x) € J, we have

T

lu(t, )| < Azt ) + Fr—=rm— // yiel (g gyt
0

X {p(s T)+als, T Hu (p1(8,Tyu(s,7)):P2(8,TyU(s, 7)) H } drds +

t =z
X// r1 1 7_)7"2—1
0

T

t
)‘ r1 1 ro—1
+ == < -+
P(Tl)P(T‘Q) J/ T) ‘9(877—7 0)‘d7—d8 X HZ(t,l’)H

L(r1)l(r2)

drds

u T7 S, T I’ 77—7 S, T
g <$7T7 (pl(& e );\F)Q(S e )))> —g(S,T, 0)

a™b"||p||s
F(?“l + 1) P(?"Q + 1)

t x
T T MOO / / (t=s)"" @=7)"" Ju |, drds
F(T1+1)F(T2+1) (p1(s,7u(s,m)) 2 (8,7 us, )l €
0
t x
k
7‘2)// Tl 1 T)TQ 1Hu (p1 sTu(ST))P2(s7—u(ST) Hcd7d5< ||Z(t,x)||
0

a6 ([lplloo+97) HquoJrk // il

drd
P(r1+1)F(r2+1) Tas,

,I T " 1"u(pl(SvTvu(s,T))7p2(577_7u(s,7')))HC

where g* = SUP(s,r)eJ ’9(877—70)"

Consider the function y defined by y(t,z) = sup{||lu(s,7)|| : —a < s < t,—8 < 7 < z},
0<t<a 0<z<h

Let (t*,2*) € [—a,t] x [, 2] be such that y(¢t,z) = |Ju(t*,z*)|. If (t*,2*) € J, then by
the previous inequality, we have for (¢,z) € J,

T

t
"7 ([[pll oo otk _
y(t,m) < HZ(t,x)H I a (Hp” +g ) HqH // 7"1 1 T)rg 1y(3,7’) drds.
0

F(?“l —i—l)P(T‘Q +1)

If (t*,2*) € J, then y(t,z) = ||¢||c and the previous inequality holds.
If (t,z) € J, Lemma 2.1 implies that there exists 6 = §(r1,r3) such that we have

t x
‘qHOO—i_k //t s)"T 13: T)"2" 1d7’ds]

0

a2 (|[pll + g%) 5a”b”(Hquo + k)
< [II (t,z)| + 0 1+1)p(r2+1)} [ L(ri+ 1) (rp + 1)

rlbm(HpHOO—i—g )
y(t,z) < [H (t, o)l + (r1+1)1‘(r2+1)]

| =

Since for every (t,x) € J, |uwqllc < y(t, ), we have ||ull < max(||¢|c, M) := M*. This
shows that the set & is bounded. As a consequence of Theorem 2.1 we deduce that F'+ G has
a fixed point w which is a solution of problem (1)—(3). >
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4. Existence Results for the Infinite Delay Case

4.1. The phase space 4. The notation of the phase space &# plays an important role
in the study of both qualitative and quantitative theory for functional differential equations.
A usual choice is a semi-normed space satisfying suitable axioms, which was introduced by
Hale and Kato (see [22]). For further applications see for instance [23, 24] and their references.

For any (¢,z) € J denote Eig) = [0,t] x {0} U{0} x [0, z], furthermore in case t = a, z = b
we write simply E. Consider the space (4, ||(-,-)||#) is a seminormed linear space of functions
mapping (—oo,0] X (—o0, 0] into R™, and satisfying the following fundamental axioms which
were adapted from those introduced by Hale and Kato for ordinary differential functional
equations:

(A1) If y & (=00, a] X (=00, b] — R™ continuous on J and y; ;) € %, for all (t,z) € E, then
there are constants H, K, M > 0 such that for any (¢,x) € J the following conditions hold:

(1) Y(t,0) 1s in H;
(1) ly(t, @) < Hym)llz;
(@12) [[y(2) 2 < K sups ryepo.nx o 19, T + Msups myem, ., 192

(Ag) For the function y(-,-) in (A1), Y4 is a #-valued continuous function on J.

(As) The space £ is complete.

Now, we present some examples of phase spaces |25, 26].

EXAMPLE 4.1. Let # be the set of all functions ¢ : (—o00,0] x (—o00,0] — R"
which are continuous on [—«,0] x [-3,0], a,8 > 0, with the seminorm |[[¢|g =
SUD(s r)e[—a,0]x[-B,0] [|#(5, T)|l. Then we have H = K = M = 1. The quotient space

B = B/|| ||z is isometric to the space C([—a,0] x [—3,0],R") of all continuous functions
from [—a, 0] x [—f,0] into R™ with the supremum norm, this means that partial differential
functional equations with finite delay are included in our axiomatic model.

EXAMPLE 4.2. Let v € R and let C, be the set of all continuous functions ¢ : (—oo, 0] x
(—00,0] — R™ for which a limit lim( 7)|—eo e7(+7) (s, 7) exists, with the norm lollc, =
SUD (s, 7)€(—00,0] X (—00,0] e+ (s, 7)||. Then we have H = 1 and K = M = max{e "(@+?) 1},

EXAMPLE 4.3. Let o, 8,7 > 0 and let

loller, = s lo(s, 7+ / / W4 | (s, 7)|| drds

(s,7)E[—a,0]x[-B A
be the seminorm for the space C'L, of all functions ¢ : (—o0,0] x (—o0,0] — R"™ which are
continuous on [—a,0] x [/, 0] measurable on (—oo —a] X (—00,0] U (—00,0] x (—o0, —p],
and such that HQSHCM <oo. Then H=1, K = f f 8+T)d’7’d8 M =2.

4.2. Main Results. Let us start in this section by defining what we mean by a solution
of the problem (4)-(6). Let the space  := {u : (—00,a] X (—00,0] = R" : ug, € % for
(t,z) € E and u|; € C(J,R™)}.

DEFINITION 4.1. A function u € € is said to be a solution of (4)—(6) if u satisfies
equations (4) and (6) on J and the condition (5) on .J .

Set #' == %’(pl ) = {(p1(s,m,u), pa(s,,u)) : (s,7,u) € JxAB, pi(s,7,u) <0;i=1,2}.
We always assume that p; : J X B — (—00,al, pa : J X B— (—00,b| are continuous and the
function (s, 7) = u(s) is continuous from ,@ into 4.

Our main result in this section is based upon the fixed point theorem due to Burton and
Kirk.
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We will need to introduce the following hypothesis:

(Hy) There exists a continuous bounded function L : %’
H¢(5,T)HPZ < L(s,7)||¢|| %, for any (s,7) € Z'.

In the sequel we will make use of the following generalization of a consequence of the phase
space axioms [27, Lemma 2.1].

Lemma 4.1. If u € €, then

lurllz=(M+L) |6z + K sup [[u(@, ),
(6,m)€[0,max{0,s}]x[0,max{0,7}]

Toy) (0,00) such that

where L' = sup(, yeqr L(8, 7).

Theorem 4.1. Assume (Hy) and that the following hypothesis holds:

(H1) The functions f,g:J x # — R™ are continuous.

(H2) There exists ¢ > 0 such that ||g(t,z,u) — g(t,z,v)|| < {||u —v|z, for any u,v € A
and (t,x) € J.

(H3) There exist p,q € C(J,R;) such that ||f(t,z,u)|| < p(t,z) + q(t,x)|ul| sz, for
(t,x) € J and each u € A.

If
LKa™b"™
<1

F(T‘l + 1) F(’I“Q + 1) ’
then the IVP (4)—(6) has at least one solution on (—o0,a] X (—o00, b].

< Transform the problem (4)-(6) into a fixed point problem. Consider the operator N :
Q — Q defined by

(1)

(6(t, ), (t,z) € J,
z(t, ) + F(rl fo Jot =8t (@ —r)=t
(Nu)(t, JI‘) = X f(87 T7 u(pl (s,T,QL(S’T))’pQ(s,T7u(S’T)))) deS (2)

+ F(rl—)lf(rg) Jo Jot =)tz — 7yt
X g(S, T u(pl(svTvu(s,T))7p2(377—7u(s,7')))) deS’ (t’ ﬂf) € J
Let v(-,-) : (—00,a] x (—00,b] — R™ be a function defined by,

ot z) = {z(t,x), (t,x) € {
o(t,z), (t,z)eJ.

Then v 5y = ¢ for all (t,x) € E.
For each w € C(J,R™) with w(t,z) = 0 for each (t,z) € E we denote by w the function
defined by

Bt ) = 4 VBT (Be) €S
7 0, (t,x) € J.

If u(-,-) satisfies the integral equation

“W:Z“’”””m! Jemor @

w drd -
X f(S, Ty w(pl(svtﬂL(s,t))va(sytvu(s,t))) + v(pl (sytvu(s,t))7p2(37t7u(s,t)))) Tas + F(Tl) F(TQ)

t x
7’1 1 ro—1 —
x / / T) g(S, Ty w(pl (Svtvu(s,t))vf)Q (Svtvu(s,t))) + v(pl (Svtvu(s,t))7p2(57t7u(s,t)))) deS’
0
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we can decompose u(-,-) as u(t,z) = w(t,x) + v(t,z); (t,x) € J, which implies
Ut = W(tz) + Vi), (t,7) € J, and the function w(- -) satisfies

X f(37 T m(pl(57t7u(s,t))7p2(37t7u(s,t))) + U(pl(sytvu(s,t))7p2(57t7u(s,t)))) drds + L(r1) T (r2)

T

t
7"1 1 ro—1 —
x / / T) 9(87 7 w(pl (Svtvu(s,t))7p2(87t7u(s,t))) + U(pl (Svtvu(s,t))vf)Q (Svtvu(s,t)))) des
0

Set Co = {w € C(J,R") : w(t,z) = 0 for (t,z) € E}, and let || - |4 be the seminorm in Cy
defined by HwH(a,b) = SUP(t,z)eE Hw(t,x)H%"i_SHp(t,x)eJ Hw(tvx)H = SUP(t.z)eJ Hw(t7x)H7 w € Co.
Cp is a Banach space with norm || - [|(4 ). Let the operators A, B : Cy — Cp defined by

(40)(t,2) = / [e—srt@—y
0

0

X (83T Wy (5.t ) (s:1g0,00)) T Vpn (s:tu(ony) 2 (s,tr1 ) ) DTS

and .
1
Bw)(t,x) = =——— yil(z — )2l
) r<r1>r<r2>o// )
g (Pl (s7t7u(s t)) p2(37t7u(s t))) + /U(pl (S,t,'lL(S t)) p2(37t7u(s t)))) deS

Then the operator N has a fixed point is equivalent to finding the fixed point of the operator
equation (Aw)(t,x) + (Bw)(t,z) = w(t,z), (t,z) € J. We shall show that the operators A
and B satisfies all the conditions of Theorem 2.1.

For better readability, we break the proof into a sequence of steps.

STEP 1. F' is continuous.

Let {w,} be a sequence such that w,, — w in Cj. Then

[Awn)t.2) — (Aw)t.9)]| < 5 / / 11 (g — -l

X\ (85T (o (57-t0m o) (57t 019) T V01 (5:7-11m))o02 (557t ())) )

f( Pl 5,TyU(s, ‘r)) p2(s77—7u(s,r))) + U(pl (syTvu(s,‘r)) p2(s T, U(s ‘r) ) H des

xT

< /t s) (g —7)r Hf 8, T, Wy (s,7) +Vn(s,r)) = f (8, T W(s,r) +V(s,r) Hdes
0

;
ST () (re

O\_,u

Since f is a continuous function, we have
trlmef(’ , W ( ) ) (’ ’w( )+U )HOO
H(Awn) B (Aw)HOO = (7"1 + 1) F(rg +1)
a0 [ f (s W) + vng) = S W0 + ) e
F(T‘l + 1) F(’I“Q + 1)

—0 as n— oo.

//\

Thus A is continuous.
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STEP 2. A maps bounded sets into bounded sets in Cj.

Indeed, it is enough show that, for any 7 > 0. there exists a positive constant ¢ such that,
for each w € B, = {w € Cp : ||wl|(ap) < 7}, we have ||A(w)|o < L.
Lemma 4.1 implies that

<@l + vl p < En+ K|[é(0,0)]] + (M + L)) 5.

15,7 + vl
Set n* := Kn+ K||¢(0,0)||+ (M + L)||¢||%- Let w € B,,. By (H3) we have for each (t,z) € J,

1 [ r1 1 Tr— ro—1
4wt Dl < 5 3r6) 0/ = )

XL (85 T W1 (5,7,0.m0)2(557,000,m0)) T Vo (5,751000, )02 (57000, )))

gI‘(rl)ll‘(rQ)O/t/x 1 —T)TQ*lp(s,T)des—i— O/t/(ts)r11

H drds

8

—1
X (@ = 1)"2 71 q(8,7) [[@pr (s,muemy) a5 1) T Vipr (s, e a5 dTds
t x
”pHOO // 7"1 1 _ T)Tg—ldeS + HqHOOT’ // 7’1 1 T)T‘g—ldes
0 0

Plloc + llallocn® ry ro HpHooJquHoon

< < T = g,
T+ 00+ 1) ST+ )02 +1) "

Hence [|A(w)]|oco < £*.

STEP 3. A maps bounded sets into equicontinuous sets in Cj.

Let (t1,21), (t2,22) € (0,a] x (0,b], t1 < t2, 1 < @2, By, be a bounded set as in Step 2,
and let w € B,,. Then

t1 1
1
H(Aw)(tg,x2)—(Aw)(t1,x1)H < W /[(tQ_5)7’1—1(x2—7')7"2—1(751—5)7"1—1(x1—7')7"2—1]
00
XN (83T @ (pn (5,msu(0my )2 (5ms0500)) T Vo1 (5,100, 25,000y ))) || AT
1 to x2
- - to — ri—1 o \r2—1
+ e [ @)
t1 x1
[ (571 5.7y, 00, 00)) T Vo (5,m1000,m) 02 (57000 ) || AT
t1 x
+71 /1/2(t —s)rr1 (x —T)rrl
T(r1)C(r2) ? ?
X Hf( Pl(STu(s )):02(8,T,u (s 7)) +U(p1(STu(s )):02(8,T,u (s 7)) H drds
to x1
XN (83T @ (pr (5,mu(0my )2 (5ms0000)) T Vo1 (5,100, 25,000y ))) || AT
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< ||PHoo + IIQHOO?? // (21— 72— (ty — 8" (g — )72 Y] drds
||PHoo + HCJIloon yi=1 ra—1 [Pl + llglloon”
+ // 7 (g — 7)™ drds + ()T (ra)
t1 T2
« //(t2 — o) (g — 1) L drds + HpHoo + ||(JHoo77 // o — 1) L drds
0 x1
l[plloo +llglloon”

< T2 t —t 71 tT’l _ re t —t T1 _ [ trl r2_tr1 ro
T(ry + 1T (ra+ 1) [a52 (g — t1)™ + t5! (w2 — @1) (ta —t1)" (z2 — 1) + 1] 2] nlah?]

l[plloc + llglloon” (
F(T1+1)F(T2—|—1)

ol + ol 1, _
F(T1+1)F(T2—|—1)
[P/l + llglloon” v [Pl + [lglloon”
to — 11 2 — — 21
T(ri + DI(ry + 1) ( )5 = 2 — )] T(ry + DI(ry + 1)
X [21‘52 (tz — tl)rl + 2t£1 (.%'2 — 1‘1)r2 + t?m? tgl .%';2 — Q(tz — tl)rl (1‘2 — .%'1)”] .

— )" (22 — 1) + —t1)" (w2 — 21)"

As t1 — t9, £1 — x9 the right-hand side of the above inequality tends to zero. The equicon-
tinuity for the cases t1 < t5 < 0, 1 < 2 < 0 and t; < 0 < t9, 1 < 0 < 29 is obvious. As
a consequence of Steps 1 to 3, together with the Arzela—Ascoli theorem, we can conclude that
A : Cy — Cp is continuous and completely continuous.

STEP 4. B is a contraction.

Let w, w* € Cp. Then we have for each (t,x) € J

t x
_ * ; )y 1 AL
[(Bu)t,a) - (Bu)t.a)]| < r<rl>r<r2>0/ [e ’
X (1902701 (5.7 ey (om100r) F Vlr (s ) 2300 )

_ s
g(S, T w (pl (SvTvu(s,T))vf)Q (SvTvu(s,T))) + v(pl (SvTvu(s,T))vf)Q (SvTvu(s,T)))) H deS

1 t x
1 —1 —
) O/ / )T @ =) D s ) a5 71 )

T

t
* ¢ 1 1 Tk
—w (/)1(L<J,T7U(s,r))7/)2(s,ﬂu(s,r)))Hﬁg T(r1)T(r2) // (t—s)""" (x—7)"" Hw(s ) W (s,7) |l 4
0

t x
(K —
S T () DG W(s, ) — w(s,7)|| drd
t x
K )L o1 - LKt xm I
) O//t §)" (1) drds |[w—wT| <T(r1+1)I‘(r2+1 [T -

Therefore ||(Bw) — (Bw")||(a,) < %Hw—ﬁnw). Since by (1), B is a contraction.

STEP 5 (A priori bounds). Now it remains to show that the set &={w € C(J,R):
w = AA(w) + AB(%)} for some A € (0,1) is bounded.
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Let w € &, then and w = AA(w) + AB(%) for some 0 < A < 1. Thus for each (t,z) € J,
we have

xT

_# / _Srl—lx_,rrg—l
w“”‘rmﬂWﬂ!!“ il — 1)
A

X f(s7 75 @(Pl (377—7“(5,7’))7p2(377—7u(s,7))) + U(pl(377—7u(s,7))7p2(377—7u(s,7')))) des + F(Tl)F(TQ)

t x
X//t Y (z— 7)1 (8 . (m(sru(“))pg(sru(sﬂ));rv(m(sru(“))pg(sru(sﬂ)))des
00

This implies by (H2) and (H3) that, for each (¢,x) € J, we have

xT

; / r1 1 7_7"2—1
mewgnmmm!/‘ )

T

A / 7"1—11__7_7’2—1
%]deS—FmO/O/(t—S) ( )

g <$7 T, w(pl (SvTvu(s,T))7P2(577_7u(s,7'))) ;\F /U(pl (SvTvu(s,T))7p2(577_7u(s,7')))> _ g(s T, 0)

x [p(s,7) + q(s,7) [[W(s,m)

X drds

a” b |[p[| o
P(Tl + 1)P(7"2 + 1)

/(t e (o L 9(s,7,0)| drds <
0

T

t
a1 il // P——
7" _ T d d
+ T(ri+ DI (rs + 1) / 7) Hw(SJ) +U(SJ)H% Tas

t x
¢ _ 1= a"b"(|lpll + g%)

t— )1 (p — )21 drds <
+F(T1)F(T2) //( S) (:C T) Hw(sﬂ') +v(3ﬂ')H% Tas F(Tl —|—1)F(T2—|—1)
0 0

t x
o+ 0) _
HQH + // rl 1 T)TQ 1Hm(sn—)_'_v(si) FZdeSa
00
where g* = sup, -y [9(s,7,0)| and
[@s, >+v<sTH@ H Wsr) || g5 + 1vis,m) N2 3
< Ksup {w(3,7): (5,7) € Y+ (M + L) [[¢ll + K [[6(0,0))].

If we name y(s,7) the right hand side of (3), then we have |[w(, ) + v(s.n)llz < y(t, ), and
therefore, for each (¢,x) € J we obtain

xT

t
r1L72 *
o, gs b (lpllo +97) H(JHOOJre // J1L (o — 1)L y(s, 1) drds. (4)
0

(7’1 + 1)F(T’2 + 1)
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Using the above inequality and the definition of y for each (¢,z) € J we have

Ka" b (||plls + g7)
T(r + 1)F(r2 +1)

o +0) _
+ Hq” + // )T 1 —7)"? 1y(s,t)des.

Then by Lemma 2.1, there exists 6 = d(r1,r2) such that we have

y(t,z) < (M + L) |19l + K [|6(0,0)]] +

t =z

0o+ ) .
ly(t @) < R+ 6 = 5 ”q” + // Y17 (2 — )27 Rdrds,
0

where
Ka" b (||plls + g%)

R= (M + L) 6l + K 6(0,0)] + e

Hence
ROKa™b(]|ql|co + £) ~

T+ D(ra+ 1) k.

ylls < R

Then, (4) implies that
aT’le'Q
F(T‘l + 1)F(T’2 + 1) [

This shows that the set & is bounded. As a consequence of Theorem 2.1 we deduce that A+ B
has a fixed point w which is a solution of problem (4)—(6). >

Iplloe + 9" + R(llalloc + )] := R*.

[wlloo <

5. Examples

EXAMPLE 5.1. As an application of our results we consider the following fractional order
perturbed hyperbolic partial functional differential equations with finite delay of the form

lu(t — o1 (u(t, z)),x — o2 (u(t,x)))| + 2
10ett2+4(1 + |u(t — o1 (u(t, z)),x — o2 (u(t, z)))|)’
if (t,x) € J:=[0,1] x [0,1], (1)
u(t,0) =t, u(0,2) =22, (t,z) € J, (2)
u(t,z) =t -+, (¢, ) e J:=[-1,1] x [-2,1]\[0,1] x [0, 1], (3)
where 01 € C(R,[0,1]), o2 € C(R,]0,2]).
pl(t,m,ap) =1t- 0'1(90(070))7 (t,.%',(p) €J x C([_LO] X [_270]7R)7

pg(t,x,tp) =T — 0'2(90(070))7 (t,.%',(p) €Jx C([—l,O] X [_270]7R)7

(“Dou)(t, ) =

Ft,z,0) = (wemli”)'(l oy (BP) €T 9 €C(-1,0 X [-2,0LR),

and
2

(10eH+=+4) (1 +|el)”

g(t,x, @) = (t,z) € J, ¢ € C([-1,0] x [-2,0],R).
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For each ¢, % € C(]—1,0] x [-2,0],R) and (¢,z) € J we have

ot 2,9) ~ 90,2, )| < 27 o~ -

Hence condition (H2) is satisfied with k = % We shall show that condition (3) holds with
a=0b=1. Indeed
ka™ b 1

- <1,
L(ri+1)C(rg+1)  5e*T(rp + 1)C(rg + 1)

which is satisfied for each (ri,r9) € (0,1] x (0,1]. Also, the function f is continuous on
[0,1] x [0,1] x [0,00) and |f(t,z, )| < |¢|, for each (t,z,p) € Jx C([—1,0] x [-2,0],R). Thus
conditions (H1) and (H3) hold. Consequently Theorem 3.1 implies that problem (1)—(3) has
at least one solution defined on [—1,1] x [-2, 1].

EXAMPLE 5.2. We consider now the following fractional order perturbed hyperbolic partial
functional differential equations with infinite delay of the form

3+ |u(t — o1(ult,z)),z — oo (u(t, z)))|
9et+r+5(1 + |u(t — oy (u(t, x)), z — oo (u(t, x)))|)’
it (t,z) e J:=10,1] x[0,1], (4)

(“Dyu)(t, z) =

u(t,0) =t, wu(0,z) =212 (t,z)€J (5)
u(t,z) =t +a%, (t,x) € J, (6)
where J := (—00,1] x (—00,1]\[0,1] x (0,1], o1 € C(R,[0,1]), o2 € C(R,[0,2]).

By = {u € C((—00,0] x (—00,0],R) : " li)lﬁl YOy (0,m) exists € R}.
M) || —00

The norm of 4, is given by ||ully = sup(g,;)e(—o0,0x (~o0,0] YO+ |4 (6, )|
Let E :=[0,1] x {0} U{0} x [0,1], and u : (=00, 1] x (—00,1] — R such that ug,) € %,
for (t,x) € E, then

lim Y0y »(@,m)= lim eV O—tn=2) 9 p)y =702 iy 1040y, 0,n) < oo.
1(6.m)][ 00 () (Or) = o (@) 1(6.m) ][00 (©.m)

Hence u(; ) € %,. Finally we prove that

Hu(m)Hv = Ksup {]u(s,T)] (s, 7) €]0,¢t] x [O,x]} -+ M sup {Hu(SJ)HV :(s,7) € E(t7m)},

where K = M =1and H =1.

Ift+60<0,z+n<0we get |lugglly =sup{|u(s,7)| : (5,7) € (—00,0] X (00,0}, and
if t+6 >0, z+n =0, then we have |[u( )lly = sup{|u(s,7)| : (s,7) € [0,¢] x [0,z]}. Thus,
for all (t+ 0,z +n) € [0,1] x [0, 1], we get

HU(M)HW = sup {|u(s,7’)| (s, 7) € (—00,0] x (—oo,O]} + sup {|u(s,7’)| (s, 1) €10,¢] x [O,x]}.

Then [Ju( ) lly = sup{llu,nlly : (s,7) € E}+sup{|u(s,7) : (s,7) € [0,2]x[0, ][} (%5, ||[5) is
a Banach space. We conclude that %, is a phase space.

pi(t,z,p) =t —01(p(0,0), (t,z,0) € J X By,
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p2(t, z,0) = & — 02(¢(0,0)), (t,z,0) € J x B,

_ [l
602 = G (T Ty

(t,x) € J, p € A,

and

3
90:5:9) = oemermy i v o) |

t,x) e J, p€ B,

For each ¢, @ € %, and (t,z) € J we have

5
N
|
£
el

X

|g(t,x, 90) - g(t,x

Hence condition (H2) is satisfied with ¢ = 3% We shall show that condition (1) holds with
a=b=K =1 we get
a2 K 1

= <1,
C(ry+ 1) (re+1)  3e5T(rp + 1) (r2 + 1)

which is satisfied for each (ri,r3) € (0,1] x (0,1]. Also, the function f is continuous on
[0,1] x [0,1] x [0,00) and |f(t,z,¢)| < 3+ |¢|, for each (¢,z,¢) € [0,1] x [0,1] x A,. Thus
conditions (H1) and (H3) hold. Consequently Theorem 4.1 implies that problem (4)—(6) has
at least one solution defined on (—oo, 1] X (—o0, 1].
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Awnunoraiusi. B nanHoit pabore MbI IPUBOIUM JOCTATOYHBIE YCIOBUSI CyIIIECTBOBAHUSI PEIIeHN HaYaIbHON
3a7a49n i (PYHKIIUMOHAJIBHO BO3MYIIEHHBIX THIEPOOTnIecKuX TudepeHInalbHbIX YPABHEHUN B YaCTHBIX
IPOM3BOAHBIX JAPOOHOTO MOPSIOK C ydYacTHEM JIpOobHOI mpom3BomHoi KamyTo ¢ 3ama3abiBaHneM, 3aBUCSIIAM
OT COCTOSIHU A, CBO/ISl UCCJIE/IOBAHNE K IIOUCKY CyIIECTBOBAHUS U € JUHCTBEHHOCTH HEIIOJBUKHBIX TOYEK COOTBET-
CTBYIOIUX orneparopoB. Hair ocHOBHO# pe3y/ibTaT Jijist 9TOI 3a/1ai OCHOBAH Ha, HEJIMHEHHON aJIbTepHATUBHOMN
TeopeMe O HemoABMKHON Touke béprona n Kupka s cyMMBbI BIOJIHE HEMTPEPBIBHOTO OIEPATOPA U CXKATHS B
GaHaXOBBIX ITPOCTPAHCTBAX U APOOHOM BepcHU HepaBeHCTBa | poryosiia. UTo6BI MOYyIUTh PE3YJIBTATHI CyIIe-
CTBOBaHMSI HEOOXOUMO MPUHUMATH BO BHUMAHKE KaK CTPYKTYPY MPOCTPAHCTBA, TAK M CBONCTBA BOZHUKAIOIIUX
omeparopoB. HacKoIbKO HaM M3BECTHO, OYE€Hb MAJIO PAbOT, MOCBSIIEHHBIX YPABHEHUSAM JAPOOHBIX MTPOU3BOJI-
HBIX ¢ KOHEYHBIM U /Ui GECKOHEUYHBIM NOCTOSIHHBIM 3alla3/IbIBAHUEM Ha OTPAHUYEeHHBIX obsacTsix. B aroMm Ha-
[IpaBJIEHUH BO3HUKAET MHOYKECTBO IPOOJIEMHBIX BOIPOCOB OTHOCUTEIBHO CYIIIECTBOBAHUS PEIIEHUN B BECOBBIX
MIPOCTPAHCTBAX HENPEPBIBHBIX (DYHKITNN, €IMHCTBEHHOCTH PEIIeHNUsI, CTPOEHUsT MHOYKECTBA PEIeHn, a TaK»Ke
TOTO, SIBJSIIOTCS JIU ONTUMAJIbHBIMU YCJIOBHUsI, KOTOPBIM IOJYUHEHBI pacCMaTpUBaeMble oneparopbl. Jlanmyio
CTaThIO MOXKHO PACCMaTPUBATh KaK BKJIAJ| B YKa3aHHYI0 pobieMaTuky. [I[puBeieHbl TaKKe UILTIOCTPUPY FOIIIE
IIpUMepBHI.

KiroueBble ciioBa: ypaBHEHHE B ACTHBIX IIPOU3BOJHBIX, JPOOHBINA IOPSIIOK, PElleHne, JIEBOCTOPOHHUM
cMerraHHblif uHTerpan Pumana — Jlnysuiis, nqpobuast npounsBonnas Kamyro, 3aBucdInas oT COCTOSTHUS 3a-
Ia3/IbIBAHNe, HEIOIBUKHAs TOUKA.
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