Уважаемые авторы, просим обратить внимание!
Подача статьи осуществляется только через личный кабинет электронной редакции.
DOI: 10.46698/v3243-1645-4815-b
Устойчивость по Уламу - Хайерсу четырехточечной краевой задачи для дифференциальных уравнений дробного порядка Капуто с параметром
Кастро Л. П. , Сильва А. С.
Владикавказский математический журнал. 2022. Том 24. Выпуск 4.С.77-90.
Аннотация: Дробное исчисление является мощным инструментом описания сложных систем с широким диапазоном применимости во многих областях науки и техники. Поведение многих систем можно описать с помощью дифференциальных уравнений дробного порядка с граничными условиями. В этом смысле большое значение имеет исследование устойчивости дробных краевых задач. Основная цель данной работы - исследование устойчивости по Уламу - Хайерсу и устойчивости по Уламу - Хайерсу - Рассиасу класса дробных четырехточечных краевых задач, содержащих производную Капуто и с заданным параметром. Используя принцип сжимающих отображений, получаются достаточные условия, гарантирующие единственность решения. Таким образом, мы получаем достаточные условия устойчивости этого класса нелинейных дробных краевых задач в пространстве непрерывных функций. Представленные результаты улучшают и расширяют некоторые предыдущие исследования. Наконец, мы построим несколько примеров, иллюстрирующих полученные теоретические результаты.
Ключевые слова: дробная краевая задача, производная Капуто, устойчивость Улам - Хайерс, устойчивость Улам - Хайерс - Рассиас
Образец цитирования: Castro, L. P. and Silva, A. S. Ulam-Hyers Stability of Four-Point Boundary Value Problem of Caputo Fractional Differential Equations with a Parameter // Владикавк. мат. журн. 2022. Т. 24, № 4. C.77-90 (in English). DOI 10.46698/v3243-1645-4815-b
1. Oldham, K. B. Fractional Differential Equations in Electrochemistry,
Advances in Engineering Software,
2010, vol. 41, no. 1, pp. 9-12. DOI: 10.1016/j.advengsoft.2008.12.012.
2. Podlubny, I. Fractional Differential Equations, Mathematics in Science and Engineering,
New York, Academic Press, 1999.
3. Samko, S. G., Kilbas, A. A. and Marichev, O. I. Fractional Integrals and Derivatives:
Theory and Applications, Singapore, Gordon & Breach, 1993.
4. Torvik, P. J. and Bagley, R-L. On the Appearance of Fractional Derivatives in the Behavior of Real Materials,
Journal of Applied Mechanics, 1984, vol. 51, no. 2, pp. 294-298. DOI: 10.1115/1.3167615.
5. Kilbas, A. A., Srivastava, H. M. and Trujillo, J. J.
Theory and Applications of Fractional Differential Equations,
Amsterdam, Netherlands, Elsevier, 2016.
6. Yang, C. and Zhai, C.
Uniqueness of Positive Solutions for a Fractional Differential Equation Via a Fixed Point Theorem of a Sum Operator,
Electronic Journal of Differential Equations,
2021, vol. 70, pp. 1-8.
7. Wang, C. and Xu, T.-Z.
Stability of the Nonlinear Fractional Differential Equations with the Right-Sided Riemann-Liouville Fractional Derivative,
Discrete and Continuous Dynamical Systems. Ser. S, 2017, vol. 10, no. 3, pp. 505-521.
8. Zhai, C. and Hao, M. Fixed Point Theorems for Mixed Monotone Operators
with Perturbation and Applications to Fractional Differential Equation Boundary Value Problems,
Nonlinear Analysis: Theory, Methods & Applications, 2012, vol. 75, no. 4,
pp. 2542-2551. DOI: 10.1016/j.na.2011.10.048.
9. Zhai, C. and Xu, L. Properties of Positive Solutions to a Class of
Four-Point Boundary Value Problem of Caputo Fractional Differential Equations with a Parameter,
Communications in Nonlinear Science and Numerical Simulation,
2014, vol. 19, no. 8, pp. 2820-2827. DOI: 10.1016/j.cnsns.2014.01.003.
10. Zhai, C., Yan, W. and Yang, C. A Sum Operator Method for the Existence
and Uniqueness of Positive Solutions to Riemann-Liouville Fractional
Differential Equation Boundary Value Problems, Communications in Nonlinear
Science and Numerical Simulation, 2013, vol. 18, no. 4,
pp. 858-866. DOI: 10.1016/j.cnsns.2012.08.037.
11. Zhao, X., Chai, C. and Ge, W. Positive Solutions for Fractional
Four-Point Boundary Value Problems, Communications in Nonlinear Science and Numerical Simulation,
2011,
vol. 16, no. 9,
pp. 3665-3672. DOI: 10.1016/j.cnsns.2011.01.002.
12. Ulam, S. M. Problems in Modern Mathematics, New York, John Wiley & Sons, 1940.
13. Hyers, D. H. On the Stability of the Linear Functional Equation,
The National Academy of Sciences USA, 1941, vol. 27, pp. 222-224.
14. Rassias, T. M. On the Stability of the Linear Mapping in Banach Spaces,
Proceedings of the American Mathematical Society,
1978, vol. 72, no. 2. pp. 297-300. DOI: 10.1090/S0002-9939-1978-0507327-1.
15. Podlubny, I. Fractional Differential Equations: An Introduction
to Fractional Derivatives, Fractional Differential Equations, to Methods
of their Solution and Some of their Applications,
Elsevier,
1998.
16. Wang, J., Lv, L. and Zhou, Y. Ulam Stability and Data Dependence for Fractional
Differential Equations with Caputo Derivative,
Electronic Journal of Qualitative Theory of Differential Equations,
2011, no. 63, pp. 1-10. DOI: 10.14232/ejqtde.2011.1.63.
17. Ali, A., Shah, K. and Li, Y. Topological Degree Theory and Ulam’s Stability
Analysis of a Boundary Value Problem of Fractional Differential Equations,
Frontiers in Functional Equations and Analytic Inequalities, Springer, Anastassiou G., Rassias J. (eds),
2019,
pp. 73-92. DOI: 10.1007/978-3-030-28950-8_4.
18. Ali, A. and Shah, K. Ulam-Hyers Stability Analysis of a Three-Point
Boundary-Value Problem for Fractional Differential Equations,
Ukrainian Mathematical Journal, 2020, vol. 72, no. 2,
pp. 161-176. DOI: 10.1007/s11253-020-01773-2.
19. Ali, A., Shah, K. and Abdeljawad, T. Study of Implicit Delay Fractional
Differential Equations under Anti-Periodic Boundary Conditions,
Advances in Difference Equations, 2020, vol. 2020, Article no. 139,
pp. 1-16. DOI: 10.1186/s13662-020-02597-x.
20. Dai, Q., Gao, R., Li, Z. and Wang, C.
Stability of Ulam-Hyers and Ulam-Hyers-Rassias for a Class of Fractional Differential Equations,
Advances in Difference Equations,
2020, vol. 2020, Article no. 103, pp. 1-15. DOI: 10.1186/s13662-020-02558-4.
21. Palaniappan, M. Hyers-Ulam-Rassias Stability of Nonlinear Fractional Differential Equation
with Three Point Integral Boundary Conditions,
International Journal of Engineering Research and Technology,
2020, vol. 13, no. 12, pp. 4679-4685.
22. El-hady, E. and Ogrekci, S. On Hyers-Ulam-Rassias Stability
of Fractional Differential Equations with Caputo Derivative,
Journal of Mathematics and Computer Science,
2021, vol. 22, no. 4, pp. 325-332. DOI: 10.22436/jmcs.022.04.02.
23. Gronwall, T. H. Note on the Derivatives with Respect to a Parameter
of the Solutions of a System of Differential Equations, Annals of Mathematics,
1919, vol. 20, no. 4, pp. 292-296. DOI: 10.2307/1967124.
24. Bellman, R. The Stability of Solutions of Linear Differential Equations,
Duke Mathematical Journal, 1943, vol. 10, no. 4,
pp. 643-647. DOI: 10.1215/S0012-7094-43-01059-2.