Аннотация: В данной работе рассматривается трехмерная система уравнений вязкоупругости первого порядка, написанная относительно перемещение и тензора напряжения. Эта система содержит свёрточные интегралы ядер релаксации с решением прямой задачи. Прямая задача есть начально-краевая задача для данной системы интегродифференциальных уравнений. В обратной задаче требуется определить ядра релаксации по заданным для некоторых компонент Фурье преобразования по переменным \(x_1\) и \(x_2\) решения прямой задачи на боковых границах рассматриваемой области. В начале методом сведения к интегральным уравнениям и последующим применением метода последовательных приближений изучаются свойства решения прямой задачи. Для обеспечения непрерывного решения получены условия гладкости и согласования начальных и граничных данных в угловых точках области. Чтобы решить обратную задачу методом характеристик она сводится к эквивалентной замкнутой системе интегральных уравнений вольтерровского типа второго рода относительно преобразования Фурье по первым двум пространственным переменным \(x_1\), \(x_2\), для решения прямой задачи и неизвестных обратной задачи. Далее к этой системе, написанной в виде операторного уравнения применяется метод сжимающих отображений в пространстве непрерывных функций с весовой экспоненциальной нормой. Показывается, что при подходящем выборе параметра в показателе экспоненты, этот оператор являются сжимающим в некотором шаре, который является подмножеством класса непрерывных функций. Таким образом, доказывается глобальная теорема существования и единственности решения поставленной задачи.
Образец цитирования: Boltaev, A. A. and Durdiev, D. K. Inverse Problem for Viscoelastic System in a Vertically Layered Medium // Владикавк. мат. журн. 2022. Т. 24, № 4. C. 30-47 (in English).
DOI 10.46698/i8323-0212-4407-h
1. Mura, T. Micromechanics of Defects in Solids, Second, Revised Edition, USA, IL, Evanston, Northwestern University, 1987.
2. Galin, L. A. Contact Problems of the Theory of Elasticity and Viscoelasticity, Moscow, Nauka, 1980 (in Russian).
3. Kilbas, A. А Integral Equations: Course of Lectures, Minsk, Belarusian State University, 2005 (in Russian).
4. Durdimurod, D., Shishkina, E. and Sitnik, S. The Explicit Formula for Solution of Anomalous Diffusion Equation
in the Multi-Dimensional Space, Lobachevskii Journal of Mathematics, 2021, vol. 42, no. 6, pp. 1264-1273. DOI: 10.1134/S199508022106007X.
5. Godunov, S. K. Equations of Mathematical Physics, Moscow, Nauka, Ch. Ed. Physical-Mat. Lit., 1979 (in Russian).
6. Romanov, V. G. Inverse Problems of Mathematical Physics, Utrecht, The Netherlands, 1987.
7. Lorenzi, A. An Identification Problem Related to a Nonlinear Hyperbolic Integro-Differential Equation, Nonlinear Analysis, Theory, Methods and Applications, 1994, vol. 22, no. 1, pp. 21-44. DOI: 10.1016/0362-546X(94)90003-5.
8. Janno, J. and Von Wolfersdorf, L. Inverse Problems for Identification of Memory Kernels in Viscoelasticity, Mathematical Methods in the Applied Sciences, 1997, vol. 20, no. 4, pp. 291-314. DOI: 10.1002/(SICI)1099-1476(19970310)20:4<291::AID-MMA860>3.0.CO;2-W.
9. Romanov, V. G. Stability Estimates for the Solution in the Problem of Determining the Kernel of the Viscoelasticity Equation, Journal of Applied and Industrial Mathematics, 2012, vol. 6, no. 3, pp. 360-370. DOI: 10.1134/S1990478912030118.
10. Totieva, Zh. D. and Durdiev, D. Q. The Problem of Determining the Multidimensional Kernel of Viscoelasticity Equation, Vladikavkaz Mathematical Journal, 2015, vol. 17, no. 4, pp. 18-43. DOI: 10.23671/VNC.2015.4.5969.
11. Durdiev, D. K. Some Multidimensional Inverse Problems of Memory Determination in Hyperbolic Equations, Zhurnal Matematicheskoi Fiziki, Analiza, Geometrii [Journal of Mathematical Physics, Analysis, Geometry], 2007, vol. 3, no. 4, pp. 411-423.
12. Durdiev, D. K. and Safarov, Z. S. Inverse Problem of Determining the One-Dimensional Kernel of the Viscoelasticity Equation in a Bounded Domain, Mathematical Notes, 2015, vol. 97, no. 6, pp. 867-877. DOI: 10.1134/S0001434615050223.
13. Romanov, V. G. On the Determination of the Coefficients in the Viscoelasticity Equations, Siberian Mathematical Journal, 2014, Vol. 55, no. 3, pp. 503-510. DOI: 10.1134/S0037446614030124.
14. Romanov, V. G. The Problem of Determining the Kernel of the Viscoelasticity Equation, Doklady Akademii Nauk, 2012, vol. 446, no. 1, pp. 18-20 (in Russian).
15. Durdiev, D. K. and Rakhmonov, A. A. Inverse Problem for the System Integro-Differential Equation SH Waves in a Visco-Elastic Porous Medium: Global Solvability, Theoretical and Mathematical Physics, 2018, vol. 195, no. 3, pp. 923-937, DOI: 10.1134/S0040577918060090.
16. Durdiev, D. K. and Rakhmonov, A. A. The Problem of Determining Two-Dimensional Kernel in a System of Integro-Differential Equations of a Viscoelastic Porous Medium, Journal of Applied and Industrial Mathematics, 2020, vol. 14, no. 2, pp. 281-295. DOI: 10.1134/S1990478920020076.
17. Durdiev, D. K. and Rahmonov, A. A. A 2D Kernel Determination Problem in a Viscoelastic Porous Medium with a Weakly Horizontally Inhomogeneity, Mathematical Methods in the Applied Sciences, 2020, vol. 43, no. 15, pp. 8776-8796. DOI: 10.1002/mma.6544.
18. Durdiev, D. K. and Totieva, Z. D. The Problem of Determining the One-Dimensional Matrix Kernel of the System of Viscoelasticity Equations, Mathematical Methods in the Applied Sciences, 2018, vol. 41, no. 17, pp. 8019-8032. DOI: 10.1002/mma.5267.
19. Totieva, Z. D. and Durdiev, D. K. The Problem of Finding the One-Dimensional Kernel of the Thermoviscoelasticity Equation, Mathematical Notes, 2018, vol. 103, no. 1-2, pp. 118-132. DOI: 10.1134/S0001434618010145.
20. Safarov, J. SH. and Durdiev, D. K. Inverse Problem for an Integro-Differential Equation of Acoustics, Differential Equations, 2018, vol. 54, no. 1, pp. 134-142. DOI: 10.1134/S0012266118010111.
21. Durdiev, D. K. and Totieva, Z. D. The Problem of Determining the One-Dimensional Kernel of Viscoelasticity Equation with a Source of Explosive Type, Journal of Inverse and Ill-Posed Problems, 2020, vol. 28, no. 1, pp. 43-52. DOI: 10.1515/jiip-2018-0024.
22. Durdiev, U. D. An Inverse Problem for the System of Viscoelasticity Equations in Homogeneous Anisotropic Media, Journal of Applied and Industrial Mathematics, 2019, vol. 13, no. 4, pp. 623-628. DOI: 10.1134/S1990478919040057.
23. Durdiev, D. K. and Turdiev, Kh. Kh. Inverse Problem for a First-Order Hyperbolic System with Memory, Differential Equations, 2020, vol. 56, no. 12, pp. 1634-1643. DOI: 10.1134/S00122661200120125.
24. Durdiev, D. K. and Turdiev, Kh. Kh. The Problem of Finding the Kernels in the System of Integro-Differential Maxwell's Equations, Journal of Applied and Industrial Mathematics, 2021, vol. 15, no. 2, pp. 190-211. DOI: 10.1134/S1990478921020022.
25. Kolmogorov, A. N. and Fomin, S. V. Elements of Function Theory and Functional Analysis, Moskow, Nauka, 1989 (in Russian).